摘要
Vapnik等人在统计学习理论和结构风险最小化的基础上提出了支持向量机算法(SVM)。该算法在高维模式识别、非线性、小样本等方面有较好的性能,已在许多领域取得了成功的应用。双正则化参数支持向量机的出现,更进一步提高了对于两类问题的研究成果。而利用样本数量来调整两个正则化参数C+和C-的比值,这一方法也得到了较为广泛的应用和认可,特别是在两类数据集中,即使这一理论没有经过严格的数学证明。文章以USPS数据库为基础,对之进行了大量的仿真实验,结果表明这个被广为接受的观点是不成立的。
Support Vector Machines (SVM) was proposed by Vapnik ct. al based on Statistical Learning Theory and Structural Risk Minimization. SVM has outstanding performance in high dimensional pattern recognition, nonlinearity, small sample data, etc. SVM has been successfully put into many areas. The research achievements have been improved by SVM with double regularization parameters. The technique of adjusting the ratio of two regularization parameters, using sample quantities has been accepted wildly, hut the theory has not been verii^cd in a serious mathematical proof. The ex- porlmental results based on USPS show that the existed theory is not correct in any conditions.
出处
《成都师范学院学报》
2014年第3期118-121,共4页
Journal of Chengdu Normal University
关键词
统计学习
VC维
支持向量机
statistical learning
VC dimension
support vector machines