期刊文献+

基于马氏椭球学习机的多类文本分类算法

Multiclass Text Classification Algorithm Based on Mahalanobis Hyper Ellipsoidal Learning Machine
下载PDF
导出
摘要 提出一种基于马氏超椭球学习机的多类文本分类算法.对每一类训练样本,训练马氏超椭球学习机,使其包含该类尽可能多的样本,同时将噪音点排除在外.对于待分类样本,通过待分类样本的映射到每个超椭球球心的马氏距离确定其类别.实验结果表明,该算法提高了分类精度和分类速度. A new multiclass text classification algorithm based on mahalanobis hyper ellipsoidal learning ma -chine is proposed .To each class sample , training the hyper ellipsoidal learning machine , which include as much the class samples as possible and push the outlier samples away .For the sample to be classified , the distance from the sample mapping to the center of each mahalanobis hyper ellipsoidal are used to decide the sample classs.The results of the experiment show that the proposed algorithm has a higher classification accuracy and classification speed .
作者 王祎 秦玉平
出处 《渤海大学学报(自然科学版)》 CAS 2014年第1期39-42,70,共5页 Journal of Bohai University:Natural Science Edition
基金 辽宁省自然科学基金项目(No:201202003) 辽宁省教育厅重点实验室项目(No:LS2010180)
关键词 超椭球 噪音点 协方差矩阵 马氏距离 hyper ellipsoidal noises covariance matrix .mahalanobis distance
  • 相关文献

参考文献10

  • 1Vapnik V.The nature of statistical learning theory[M].New York:Springer,1995.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 3Krebel U G.Pairwise classification and support vector machines[C].Advances in Kernel Methods:Support Vector Learning.Cambridge,MA:MIT Press,1999,255-268.
  • 4Bennett K P.Combining support vector and mathematical programming methods for classification[C].Advances in Kernel Methods:Support Vec-tor Learning.Cambridge,MA:MIT Press,1999:307-326.
  • 5Platt J C,Cristianini N and Shawe-Taylor J.Large margin DAGs for multiclass classification[C],Advances in Neural Information ProcessingSystems.Cambridge,MA:MIT Press,2000:547-553.
  • 6Qin Y P,Leng Q K.A New Incremental Learning Algorithm Based on Hyper-Sphere SVM[C].Proceeding of International Conference on FuzzySystems and Discovery.Knowledge,2011:1551-1554.
  • 7秦玉平,陈一荻,王春立,王秀坤.基于超椭球的多类文本分类算法研究[J].计算机科学,2011,38(8):242-244. 被引量:3
  • 8Wei X K,Huang G B.Mahalanobis eillpsoidal learning machine for one class Classification[C].International Conference on Machine Learningand Cybernetics,2007:3528-3533.
  • 9李永新,薛贞霞.最大间隔椭球形多类分类算法[J].计算机工程,2010,36(7):185-186. 被引量:2
  • 10李建民,李永新,薛贞霞.基于马氏椭球学习机的监督野点探测[J].计算机工程与应用,2009,45(13):200-202. 被引量:3

二级参考文献30

  • 1Breunig M M,Kriegel H P,Ng R T,et al.LOF:identifying densitybased local outliers[C]//SIGMOD'00:Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.ACM Press,2000:93-104.
  • 2Knorr E M,Ng R T,Tucakov V.Distanee-based outliers:Algorithms and appllcations[J].VLDB Journal:Very Large Data Bases,2000,8(3-4):237-253.
  • 3Eskin E.Anomaly detection over noisy data using learned probability distributions[C]//ICML'00:Proc of the 17th Int'l Conf on Machine Learning,2000:255-262.
  • 4Tax D J,Ypma A,Duin R W.Support vector data description applied to machine vibration[C]//Praceedings of 5th Annual Conference of the Advanced School for Computing and Imaging,Heijen,NL,USA,1999:398-405.
  • 5Wei X K,Huang G B,Li Y H.Mahalanobis ellipsoidal learning machine for one class classification[C]//Proceeding of ICMLC,2007(6):3528-3533.
  • 6Ruiz A,Lopez-de-Teruel P E.Nonlinear kernel-based statistical pattern analysis[J].IEEE Transactions on Neural Networks,2001,12(1):16-32.
  • 7Asuncion A,Newman D J.UCI Machine Learning Repository[EB/OL].http://www.ics.uci.edu/-mlearn/MLRepository.html.
  • 8Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAG's for Mutticlass Classification[C]//Proceedings of Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2000.
  • 9Zhu Meilin, Wang Yue, Chen Slfifu, et al. Sphere-structured Support Vector Machines for Multi-class Pattern Recognition[M]//Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Berlin, Germany: Springer-Verlag, 2003.
  • 10Hao Peiyi, Lin Yen-Hsiu. A New Multi-class Support Vector Machine with Multi-sphere in the Feature Space[M]//New Trends in Applied Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2007.

共引文献2279

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部