期刊文献+

基于DFT变换的彩色图像平滑滤波 被引量:4

Smoothing filter for color image using discrete fourier transform
下载PDF
导出
摘要 针对彩色图像的平滑滤波问题,提出了基于DFT变换的平滑滤波算法。该算法的基本思想是提取彩色图像的各分量,分别对每幅分量图像应用DFT频域滤波方法进行平滑,将各分量的滤波图像合成并显示。通过改变噪声类型和彩色空间模型,比较了采用DFT平滑滤波算法的平滑效果。实验结果表明,该平滑滤波算法对加入高斯和椒盐噪声的彩色图像均具有良好的滤波效果,其适用于RGB、NTSC、HSV、HSI彩色空间模型的平滑。 Aiming at the problems of the smoothing filter for color image, an image smoothing method based on discrete flourier transform is presented. The fundamental principle is that component images are extracted from a color image, and then filtering method of DFT frequency domain is used for component image to smooth, finally, the smoothed component images are synthe- sized and displayed. The method smoothing effects in different noise and the color space models are compared. Experiments show that the proposed method could have good smoothing effect for the added Gaussian and salt and pepper noise image and applied to RGB, NTSC, HSV, HSI color space model to smooth.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第4期1327-1331,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61261044)
关键词 彩色图像 图像处理 平滑滤波 DFT变换 彩色空间 color image image processing smoothing filter discrete flourier transform color space
  • 相关文献

参考文献12

  • 1韩宝立,刘杨涛.图像平滑算法的研究与改进[J].电脑知识与技术,2009,5(10X):8540-8542. 被引量:4
  • 2杨会云,张有会,霍利岭,赵金.Bayes理论和邻域平均法在图像去噪中的应用[J].计算机工程与应用,2010,46(9):149-151. 被引量:11
  • 3李雪威,张新荣.保持边缘和细节的彩色图像自动平滑[J].计算机工程与应用,2010,46(3):172-174. 被引量:2
  • 4Li P F, Wang S R, Jing J F. The segmentation in textile prin- ting image based on mean shift [C] //Proceedings of the 10th Con/erence on Computer-Aided Industrial Design and Conceptual Design,2009 : 1528-1532.
  • 5Wang Z Y, Boesch R, Waser L, et al. Mean shift segmentation applied to ADS40 data for automatic forest detection [C] // Proceedings of the International Conference on Information and Automation, 2009:1099-1103.
  • 6Jimenez-Alaniz J R, Pohl-Alfaro M, Medina-Banuelos V, et al. Segmenting brain MRI using adaptive mean shift [C] // Pro- ceedings of the 28th IEEE Conference on Engineering in Medi-cine and Biology Society, 2006.. 3114-3117.
  • 7Mayer A, Greenspan H. An adaptive mean-shift framework for MRI brain segmentation [C] //IEEE Transactions on Medical Imaging, 2009.. 1238-1250.
  • 8王晏,孙怡.自适应Mean Shift算法的彩色图像平滑与分割算法[J].自动化学报,2010,36(12):1637-1644. 被引量:24
  • 9杨文兵,许法强.基于颜色空间转换的彩色图像平滑处理[J].科技信息.2009,15(9);12-15.
  • 10Rafael C Gonzalez. Digital image processing using MATLAB [M]. Beijing: Publishing House of Electronics Industry, 2012.

二级参考文献43

共引文献72

同被引文献29

  • 1瞿年清,谢梦洲.脉搏波形释义[J].中国中医药信息杂志,2007,14(6):3-4. 被引量:17
  • 2AGRAWAL R, SRIKANT R. Mining sequential patterns [C]// ICDE '95: Proceedings of the 11th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1995: 3-14.
  • 3RATANAMAHATANA C A, LIN J, GUNOPULOS D, et al. Data Mining and Knowledge Discovery Handbook [M]. Berlin: Springer, 2005: 1069-1103.
  • 4HAN J, DONG G, YIN Y. Efficient mining of partial periodic patterns in time series database [C]// Proceedings of the 1999 15th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1999: 106-115.
  • 5SIRISHA G N V G, SHASHI M, RAJU G V P. Periodic pattern mining—algorithms and applications [EB/OL]. [2015-12-04]. http://globaljournals.org/GJCST_Volume13/4-Periodic-Pattern-Mining-Algorithms.pdf.
  • 6YU X, YU H. An asynchronous periodic sequential patterns mining algorithm with multiple minimum item supports [C]// Proceedings of the 2014 9th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing. Washington, DC: IEEE Computer Society, 2014: 274-281.
  • 7AMIR A, APOSTOLICO A, EISENBERG E, et al. Detecting approximate periodic patterns [C]// Proceedings of the 1st Mediterranean Conference on Design and Analysis of Algorithms. Berlin: Springer, 2012: 1-12.
  • 8YANG J, WANG W, YU P S. Mining surprising periodic patterns [J]. Data Mining and Knowledge Discovery, 2004, 9(2): 189-216.
  • 9张巍,郑建彬.基于遗传算法实现签名曲线的匹配[J].武汉理工大学学报(信息与管理工程版),2008,30(1):39-43. 被引量:2
  • 10左颢睿,张启衡,徐勇,赵汝进.基于GPU的快速Sobel边缘检测算法[J].光电工程,2009,36(1):8-12. 被引量:27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部