期刊文献+

基于智能手机MARG传感器的行人导航算法 被引量:11

Pedestrian navigation algorithm based on the smart phone MARG sensors
原文传递
导出
摘要 对于手持式移动设备的定位导航需求,特别是在室内无法接收到GPS信号的恶劣环境,提出了一种基于智能手机上的磁力计,陀螺仪和加速度计(magnetic,angular rate and gravity,MARG)传感器的行人导航算法,该算法在行人航迹推算的基础上,利用数字低通滤波器滤波后的加速度计三轴模值数据,对行人步态进行检测,采用经验模型对行人步长进行估计,并结合扩展卡尔曼滤波器,采用自适应的方式实时调整测量噪声协方差矩阵,将MARG传感器融合数据用于最佳航向角估算。在智能手机平台上进行测试验证,实验结果表明,在无磁或有磁干扰环境下,所提出的行人导航算法均可保证准确、可靠、持续的位置信息。 The demand for navigating a user with a hand-held device, especially in GPS denied environments, has tremen-dously increased over the last five years. Based on this, this paper presented pedestrian navigation algorithm based on smart phone magnetic, angular rate and gravity (MARG)sensors, which is on the basis of pedestrian dead reckoning algorithm, u- sing a low-pass filter filtered accelerometer data to detect pedestrian step, using an empirical model to estimate the pedestri- an step length, and we designed an extended Kalman filter, using adaptive way to adjust timely measurement noise eovari-ance matrix, to fuse the MARG sensor data and to estimate the optimal heading angle. Validation tests on the smart phone platform, and experimental results show that the non-magnetic or magnetic interference environment, pedestrian navigation proposed algorithm can ensure accurate, reliable, continuous location information.
作者 田增山 张媛
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2014年第2期223-227,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61301126) 重庆市基础与前沿研究计划项目(cstc2013jcyjA40041) 重庆邮电大学博士启动基金(A2012-33) 重庆市重点实验室专项基金(CSTC) 重庆市教育委员会科学与技术项目(KJ130528) 重庆邮电大学青年科学基金(A2012-77)~~
关键词 行人导航 MARG传感器 智能手机 扩展卡尔曼滤波 pedestrian navigation MARG sensors smart phone extended Kalman filter(EKF)
  • 相关文献

参考文献7

  • 1SOEHREN W, HAWKINSON W. Prototype personal navigation system [ J ]. Aerospace and Electronic Sys- tems Magazine, IEEE, 2008, 23 (4) : 10-18.
  • 2孙作雷,茅旭初,田蔚风,张相芬.基于动作识别和步幅估计的步行者航位推算[J].上海交通大学学报,2008,42(12):2002-2005. 被引量:18
  • 3MADGWICK S O H, HARRISON A J L, VAIDY- ANATHAN R. Estimation of IMU and MARG orienta- tion using a gradient descent algorithm [ C ]//IEEE In- ternational Conference on Rehabilitation Robotics, Zur- ich: IEEE Press, 2011: 1-7.
  • 4SABATINI A M. Quatemion-based extended Kalman fil- ter for determining orientation by inertial and magnetic sensing [ J ]. Biomedical Engineering, IEEE Transac- tions on, 2006, 53(7) : 1346-1356.
  • 5罗磊,田增山,陈俊亚.EKF定位跟踪算法研究[J].重庆邮电大学学报(自然科学版),2009,21(1):50-52. 被引量:18
  • 6MUNGUIA R, GRAU A. An attitude and heading refer- ence system (AHRS) based in a dual filter[ C ]//IEEE 16th Conference on Emerging Technologies & Factory Automation. Toulouse: IEEE Press, 2011: 1-8.
  • 7REN H, KAZANZIDES P. Investigation of attitude track- ing using an integrated inertial and magnetic navigation system for hand-held surgical instruments [ J ]. Mecha- tronics, IEEE/ASME Transactions on, 2012, 17 (2) : 210-217.

二级参考文献11

共引文献34

同被引文献81

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部