期刊文献+

CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME 被引量:6

CENTRAL LIMIT THEOREMS FOR A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
下载PDF
导出
摘要 We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization. We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第2期501-512,共12页 数学物理学报(B辑英文版)
基金 partially supported by the National Natural Science Foundation of China(NSFC,11101039,11171044,11271045) a cooperation program between NSFC and CNRS of France(11311130103) the Fundamental Research Funds for the Central Universities Hunan Provincial Natural Science Foundation of China(11JJ2001)
关键词 Branching random walk random environment in time central limit theorems Branching random walk random environment in time central limit theorems
  • 相关文献

参考文献18

  • 1Asmussen S, Kaplan N. Branching random walks I. Stochastic Processes Appl, 1976, 4(1): 1-13.
  • 2Athreya K B, Karlin S. On branching processes with random environments I. Extinction probabilities. Ann Math Statist, 1971, 42:1499-1520.
  • 3Athreya K B, Karlin S. On branching processes with random environments Ⅱ. Limit theorems. Ann Math Statist, 1971, 42:1843-1858.
  • 4Baillon J B, Clement Ph, Greven A, et al. A variational approach to branching random walk in random environment. Ann Probab, 1993, 21(1): 290-317.
  • 5Biggins J D. Martingale convergence in the branching random walk. J Appl Probability, 1977,14(1): 25 37.
  • 6Biggins J D. The central limit theorem for the supercritical branching random walk and related results. Stochastic Process Appl, 1990, 34(2): 255-274.
  • 7Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv in Appl Probab, 2004, 36(2): 544-581.
  • 8Durrett R. Probability: theory and examples. 2nd ed. Belmont, CA: Duxbury Press, 1996.
  • 9Greven A, den Hollander F. Branching random walk in random environment: phase transitions for local and global growth rates. Probab. Theory Related Fields, 1992, 91(2): 195-249.
  • 10Harris T E. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer-Verlag, 1963.

同被引文献8

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部