期刊文献+

基于半监督距离学习和多模态信息的图像聚类 被引量:3

Image Clustering Based on Semi-supervised Distance Learning and Multi-modal Information
下载PDF
导出
摘要 通过融合图像中不同模态的信息并利用少量带标记的图像进行半监督距离学习,来对图像进行聚类。首先,提取彩色图像中RGB颜色空间的直方图信息、纹理信息,并采用SIFT算法提取Bag of Words来重新表达图像,从而基于图像的颜色特征、纹理特征以及语义特征,建立图像的多模态表达机制,将原始图像投射到表达空间;然后,利用少量标记的图像,通过半监督距离学习,获得图像在多模态信息空间的相似性度量;最后,通过半监督聚类方法,实现图像分组,在多个图像数据库中验证提出的方法的有效性。 The project clustered images by fusing the different model information in the images and taking advantage of a small amount of labeled images for semi-supervised distance lesming.First,we extracted histogram information of the RGB color space,texture information in the color images,and Bag of Words by using the SIFT algorithm to re-express the image,thus establishing the multi-modal express mechanism of images based on the image's color,texture and semantic features to project the original image onto the space to express.Then,using a small amount of the marked image,we obtained a similarity measure in multi-modal information space of images through the semi-supervised distance learning.Finally,we realized grouping images through the semi-supervised clustering method and verified the validity of the proposed method in the plurality of images in the database as well.
出处 《计算机科学》 CSCD 北大核心 2014年第3期41-45,共5页 Computer Science
基金 国家优秀青年科学基金(61222210)资助
关键词 半监督 距离学习 多模态 图像聚类 Semi-supervise Distance learning Multi-modal Image clustering
  • 相关文献

参考文献7

  • 1Hoi S C H,Liu W,Chang S F.Semi-Supervised Distance Metric Learning for Collaborative Image Retrieval[C] // 2008 IEEE Conference on Computer Vision and Pattern Recognition,2008.Anchorage,Alaska,IEEE Computer Society,2008:1-7.
  • 2Weinberger K Q,Blitzer J,Saul L K.Distance Metric Learning for Large Margin Nearest Neighbor Classification[J].Journal of Machine Learning Research,2009,10:207-244.
  • 3Bilenko M,Basu S J,Mooney R.Integrating Constraints and Metric Leaming in Semi-Supervised Clustering[C] //ICML' 04Proceedings of the 21st International Conference on Machine Learning,2004.Banff,Canada:ACM New York,2004:81-88.
  • 4McFee B,Lanckriet G.Learning Multi-modal Similarity[J].Journal of Machine Learning Research,2011,12:491-523.
  • 5熊建斌,李振坤,刘怡俊.半监督聚类算法研究现状[J].现代计算机,2009,15(12):61-64. 被引量:4
  • 6杨璐宇.基于图像SIFT特征的图像检索方法[J].科技资讯,2009,7(34):81-82. 被引量:1
  • 7张琳波,王春恒,肖柏华,邵允学.基于Bag-of-phrases的图像表示方法[J].自动化学报,2012,38(1):46-54. 被引量:25

二级参考文献34

  • 1蒋盛益,李庆华,李新.数据流挖掘算法研究综述[J].计算机工程与设计,2005,26(5):1130-1132. 被引量:21
  • 2朱国普,曾庆双,屈彦呈,王常虹,沈博昌.一种基于HMRF模型的无监督图像分割算法[J].电子学报,2006,34(2):374-379. 被引量:2
  • 3俞研,黄皓.一种半聚类的异常入侵检测算法[J].计算机应用,2006,26(7):1640-1642. 被引量:17
  • 4罗晓清,王士同,徐红林.基于辅助空间与主空间合作的半监督聚类方法[J].计算机工程与应用,2007,43(23):177-180. 被引量:2
  • 5Shotton J, Blake A, Cipolla R. Multiscale categorical object recognition using contour fragments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 30(7): 1270-1281.
  • 6Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Ro- bust object recognition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.
  • 7Torralba A, Murphy K P, Freeman W T. Contextual mod- els for object detection using boosted random fields. In: Proceedings of the Neural Information Processing Systems. Vancouver. Canada: NIPS. 2004. 1401-1408.
  • 8Zhu L, Rao A B, Zhang A D. Theory of keyblock-based im- age retrieval. ACM Transactions on Information Systems, 2002, 20(2): 224-257.
  • 9Comaniciu D, Meer P. Mean shift: a robust approach to- ward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5): 603-619.
  • 10Gemert J C, Geusebroek J M, Veenman C J, Smeulders A W M. Kernel codebooks for scene categorization. In: Pro- ceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2008. 696-709.

共引文献27

同被引文献44

  • 1Hasan H, Abdul K S. Fingerprint Image Enhancement and Recognition Algorithms: A Survey [ J ] Neural Computing and Applications ,2013,23 ( 6 ) : 1605-1610.
  • 2Gnen M, Alpaydin E. Multiple Kernel Learning Algorithms [J]. Journal of Machine Learning Research, 2011,12:2181-2238.
  • 3Lu Jiwen, Zhou Xiuzhuang, Tan Yap-peng, et al. Neighborhood Repulsed Metric Learning for Kinship Verification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36 ( 2 ) :331-345.
  • 4Diethe T, Hardoon D R, Shawe T J. Constructing Nonlinear Discriminants from Multiple Data Views [ C ]// Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, Germany: Springer ,2010 : 328-343.
  • 5Kim S J,Magnani A, Boyd S. Optimal Kernel Selection in Kernel Fisher Discriminant Analysis [C ]//Pro- ceedings of the 23rd International Conference on Machine Learning. New York, USA : ACM Press, 2006 : 465 -472.
  • 6Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Tran- sactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210-227.
  • 7Pillai J K, Patel V M, Chellappa R, et al. Secure and Robust Iris Recognition Using Random Projections and Sparse Representations [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 ( 9 ) : 1877- 1893.
  • 8Nagesh P,Li /3. A Compressive Sensing Approach for Expression-invariant Face Recognition [ C] //Proceed- ings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2009 .. 1518-1525.
  • 9Zhang Qiang, Li Baoxin. Discriminative K-SVD for Dictionary Learning in Face Recognition [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA:IEEE Pres s, 2010 : 2691-2698.
  • 10Yuan Xiaotong, Liu Xiaobai, Yan Shuicheng. Visual Classification with Multi-task Joint Sparse Representa- tion[ J]. IEEE Transactions on Image Processing,2012, 21 (10) :3493-3500.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部