期刊文献+

积分离散引导的物联网中离散系统差异数据融合 被引量:5

Discrete Data Fusion with Integral Discrete Guidance in Internet of Things
下载PDF
导出
摘要 研究一种积分离散引导的物联网中离散系统差异数据融合。对物联网中离散型制造系统下各个物联网节点的差异数据进行融合处理是离散型制造系统需要解决的重要问题。在传统的离散型制造系统中,数据采用分布式处理方法,每个节点的数据做单独处理,所以无法融合所有数据的优点,达到较好的全局效率。提出一种积分离散引导的物联网中离散系统差异数据融合,即采用物联网技术将分布式系统下各个离散制造系统的终端数据进行统一收集和综合,然后采用积分离散引导的方法对获取的所有差异化数据进行处理,从而达到所有数据的有效融合。采用一组100节点的6类型数据进行实验,结果显示,采用积分离散引导的物联网中离散系统差异数据融合,数据被很好地融合起来,且数据的谱平均分布,所以算法具有很好的应用价值。 The discrete data fusion with integral discrete guidance in internct of things was researched.The data fusion process in discrete manufacturing system was the first problem that should be solved under various different things node.In traditional discrete based manufacturing system,the data was processed with distributed method,and data of each node was treated alone,so it cannot integrate all the advantages of data to achieve better overall efficiency.The discrete data fusion with integral discrete guidance in internet of things was proposed,the networking technology in distributed system was used for discrete manufacturing system under unified data collection terminals and integrated,and then the method of discrete points was taken out to acquire all the differential data processing,with which the effective integration of all data was achieved.A group of 100 nodes six types of data was taken as target to test the performance,and the experimental result shows that under discrete data fusion with integral discrete guidance,the data is fused well,and the spectral distribution of the data is even,so the algorithm has good application value.
出处 《计算机科学》 CSCD 北大核心 2014年第3期149-152,共4页 Computer Science
基金 国家自然科学基金(71071046/G0110) 安徽省自然基金(KJ2013B051)资助
关键词 积分离散引导 物联网 差异化数据融合 Integral discrete guidance Internet of things Discrete data fusion
  • 相关文献

参考文献16

二级参考文献127

  • 1余雷.基于RFID电子标签的物联网物流管理系统[J].微计算机信息,2006(01Z):233-235. 被引量:113
  • 2杨国明.猪采食行为研究进展[J].猪业科学,2006,23(3):14-16. 被引量:16
  • 3黎立,朱清新,王芳.EPC系统中的中间件研究[J].计算机工程与设计,2006,27(18):3360-3363. 被引量:19
  • 4刘雨,望育梅,张琳.一种无线传感器网络中的信息驱动节点选择机制[J].北京邮电大学学报,2006,29(6):62-66. 被引量:4
  • 5卢秉恒.机械制造技术基础[M].北京:机械工业出版社,2008.
  • 6[1]Himmelblau, D.M. Applied Nonlinear Programming. New York: McGraw-Hill, Inc., 1972.
  • 7[2]Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Readings, MA: Addison-Wesley Publishing Company, 1989.
  • 8[3]Michalewicz, Z., Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation Journal, 1996,4(1):1~32.
  • 9[4]Powell, D., Skolnick, M. Using genetic algorithms in engineering design optimization with nonlinear constraints. In: Forest, S., ed. Proceedings of the 5th International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1993. 424~430.
  • 10[5]Deb, K., Agrawal, S. A niched-penalty approach for constraint handling in genetic algorithms. In: Montana, D., ed. Proceedings of the ICANNGA-99. Portoroz, Slovenia, 1999. 234~239.

共引文献916

同被引文献76

引证文献5

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部