期刊文献+

基于稀疏低秩描述的图像检索方法 被引量:2

Image Retrieval Method Based on Sparse Low-rank Representation
下载PDF
导出
摘要 使用颜色、形状、纹理等特征的基于内容的图像检索技术,将图像看作向量空间中的点,通过计算两点之间的某种距离来衡量图像间的相似度,然而在提取图像特征时相同类型的图像会出现不一致的特征,极大地影响了检索算法的准确率。针对该问题,提出一种稀疏低秩描述的多特征图像检索方法。通过对图像集的稀疏低秩描述,保持了相同类别特征的全局结构,同时也降低了对于局部噪声的敏感度,增强了检索算法的鲁棒性。在Corel图像集上的检索实验结果表明,该方法较已有的基于内容的图像检索方法有更好的检索效果。 The content based image retrieval method extracts the color,textural,shape features of images,which can be represented in the feature space,with similarities among them obtained by some distance between feature vectors.Its accuracy critically depends on the feature vectors.However,images in same class will have different features.This paper presented an image retrieval method based on sparse low-rank representation.After the low-rank components of each set was recovered,both the global mixture of subspaces structure and the locally linear structure of the features were captured.The experimental results show that the method not only has a strong robustness to the unstablefeatures,but also has a good retrieval performance.
出处 《计算机科学》 CSCD 北大核心 2014年第3期302-305,共4页 Computer Science
基金 国家自然科学基金(61103070) 国家科技支撑计划课题(2012BAF10B12)资助
关键词 基于内容的图像检索 稀疏低秩描述 特征提取 Content based imageretrieval Sparse low-rank representation Feature extraction
  • 相关文献

参考文献18

  • 1Datta R,Joshi D,Li J,et al.Image retrieval:ideas,influences,and trends of the new age[J].ACM ComputingSurveys,2008,40(2):1-60.
  • 2Han C H,SimKwee Bo.Real-time face detectionusing AdaBoot algorithm[C] // Control,Automation andSystemsICCAS,2008International Conference on Scoul.Korea,2008:1892-1895.
  • 3Konstantinidis K,Gasteratos A,Andreadis I.Image retrieval based onfuzzy color histogram processing[J].Optics Communications,2005,248(15):375-386.
  • 4Zakariya S M,Ali R,Ahmad N.Combining visual features of animage at different precision value of unsupervised content based imageretrieval[C] //Computational Intelligence and Computing Research,2010 IEEE International Conference.2010:1-4.
  • 5Hiremath P S,Pujari J.Content based image retrieval using color,texture and shape features[C] //15th International Conference on Advanced Computing and Communications,IEEE Computer Society.2007:780-784.
  • 6Chen G,Peng R,et al.Pallet Recognition and Localization Method for Vision Guided Forklift[C] //Wireless Communications,Networking and Mobile Computing.2012 8th International Conference on Shanghai,China,2012.
  • 7Ojala T,Pietikainen M,Hardwood D.A comparative study of texture measures with classification based on featuredistribution[J].Pattern Recognition,1996,29 (1):51-59.
  • 8王向阳,李东明,杨红颖.基于Zernike色度分布矩的彩色图像检索算法[J].模式识别与人工智能,2012,25(2):313-317. 被引量:8
  • 9Wee C H,Paramesran R.On the computational aspects of Zerni ke moments[J].Image and Vision Computing,2007,25(6):967980.
  • 10Lv X,Chen G,Wang Z C,et al.Grassmannian Manifolds Discriminant Analysis Based On Low-Rank Representation for Image Set Matching[J].Chinese Conference on Pattern Recognition,2012(321):17-24.

二级参考文献27

  • 1李丽宏,苗敬利,王静爽,安庆宾.相对边界矩在模式识别中的应用[J].微计算机信息,2005,21(07X):42-43. 被引量:8
  • 2邢强,袁保宗,唐晓芳.一种基于加权色彩直方图的快速图像检索方法[J].计算机研究与发展,2005,42(11):1903-1910. 被引量:12
  • 3董立羽.现代生物特征识别技术发展综述[J].电脑与信息技术,2007,15(5):11-13. 被引量:16
  • 4Datta R,Joshi D,Li Jia. Image Retrieval:Ideas,Influences,and Trends of the New Age[J].ACM Computing Surveys,2008,(02):1-60.doi:10.1145/1348246.1348248.
  • 5Deselaers T,Keysers D,Ney H. Features for Image Retrieval:An Experimental Comparison[J].Information Retrieval,2008,(02):77-107.
  • 6Swain M J,Ballard D H. Color Indexing[J].International Journal of Computer Vision,1991,(01):11-32.
  • 7Jongan P;Youngeun A;Pankoo K.Quantization of Colors Using Median of Pixels for Color Correlogram[A]香港,2007723-729.
  • 8Arijit B,Bhargab B B,Malay K K. Euler Vector for Search and Retrieval of Gray-Tone Images[J].IEEE Transactions on Systems Man and Cybernetics,2005,(04):801-812.
  • 9Wang Xiangyang,Wu Junfeng,Yang Hongying. Robust Image Retrieval Based on Color Histogram of Local Feature Regions[J].Multimedia Tools and Applications,2010,(02):323-345.
  • 10Li Xuelong. Image Retrieval Based on Perceptive Weighted Color Blocks[J].Pattern Recognition Letters,2003,(12):1935-1941.

共引文献9

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部