期刊文献+

一种少自由度并联机构静刚度研究 被引量:6

Stiffness Analysis of One Limited-DOF Parallel Mechanism
下载PDF
导出
摘要 并联机构,尤其是用于机加工的并联机床都需要很高的刚度要求,因此建立其刚度模型就显得尤为重要。现有的刚度建模方法多是基于集中刚度模型,但是该方法的物理意义不够明确。基于螺旋理论建立了一种少自由度并联机构的刚度模型,该方法将驱动刚度和约束刚度区别对待,物理意义明确。通过计算并联机构空间自由度,并利用螺旋方程的反螺旋解法,得出并联机构的运动雅可比矩阵和约束雅可比矩阵,经组合得到少自由度并联机构的完全雅可比矩阵,从而建立了其静刚度模型。建立的静刚度模型可以作为少自由度并联机构的性能评价指标,同时又可以为分析其他过约束的少自由度并联机构提供理论支持。 Stiffness is one of the most important performances of parallel mechanisms, particularly for those which are used as machine tools. Therefore, it is quite necessary to set up its stiffness modeling. By now, the stiffness analysis for some parallel manipulators are established in static condition by means of lumped stiffness model, but the physical meaning of this approach is not very clear. This paper presents an explicit approach for the static stiffness and degrees of freedom analysis of the Limited-DOF parallel manipulator based on the screw theory. The manipulator is divided into three branches for the convenience of analysis. The reciprocal screw system of each chain is derived from the twist equations. Then, the kinematic Jacobian sub-matrix and constraint Jacobian sub-matrix are derived based on the reciprocal product. According to these two sub-matrixes, the overall Jacobian matrix is obtained. The proposed stiffness model can be used as performance evaluation method for the Limited-DOF parallel manipulators.
出处 《机械设计与制造》 北大核心 2014年第4期178-181,共4页 Machinery Design & Manufacture
基金 安徽省自然科学基金(1208085QB41)
关键词 螺旋理论 自由度 静刚度 约束刚度 少自由度并联机构 EXECHON Screw theory Degrees of freedom Static stiffness Constraint Stiffness Limited-DOF Parallel Mechanism EXECHON
  • 相关文献

参考文献6

  • 1李彬,黄田,刘海涛,赵新华.Exechon混联机器人的三自由度并联机构模块位置分析[J].中国机械工程,2010,21(23):2785-2789. 被引量:24
  • 2Y.Jin,Z.Bi,R.Gibsonz.Kinematic Analysis of a New Over-constrained Parallel Kinematic Machine[J].13th World Congress in Mechanism and Machine Science,Guanajuato,Mexico,19-25 June,2011.
  • 3C.Gosselin.Stiffness Mapping for Parallel Manipulators[J].IEEE Transactions on Robotics and Automation,1990(6):377-382.
  • 4S.F.Chen,I.Kao,Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers[J],The International Journal of Robotics Research,2000(19):835-847.
  • 5石志新,罗玉峰,陈红亮,李贯成,沈可微.含有柔性铰链并联机器人的刚度分析及刚度优化配置[J].机械设计与制造,2005(7):92-93. 被引量:6
  • 6W.K.Yoon,T.Suehiro.Y.Tsumaki.Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism[J].Robotica,2004(22):463-475.

二级参考文献14

  • 1Neumann K E. Robot: US, 4732525 [P]. 1988-03- 12.
  • 2D6rries Scharmann Technologie GmbH. Sprint Z3 [EB/OL]. [2006-12-10] http://www. ds-- technol- ogle. de/v3/products/index. php? id = 31& group_ id=9.
  • 3黄田,李曚,李占非,等.非对称空间五自由度混联机器人:中国,CN1524662[P].2003-09-16.
  • 4Huang T, Li M, Zhao X M,et al. Conceptual De- sign and Dimensional Synthesis for a 3--DOF Mod- ule of the TriVariant--a Novel 5--DOF Reconfigu- table Hybrid Robot[J]. IEEE Trans. Robot. Au- tom., 2005, 21(3):449-456.
  • 5Lukanin V. Inverse Kinematics, Forward Kinemat- ics and Working Space Determination of 3 -- DOF Parallel Manipulator with S--P--R Joint Structure [J]. Periodica Polytechnica Ser. Mech. Eng., 2005, 49(1) :39-61.
  • 6Lee T Y, Shim J K. Forward Kinematics of the General 6- 6 Stewart Platform Using Algebraic Elimination[J]. Mechanism and Machine Theory, 2001,36 : 1073-1085.
  • 7Liang C G,Rong H. A Direct Displacement Solution to the Stewart Platform Mechanical Hand[J]. Jour- nal of Mechanical Engineering, 1991, 27(2) : 26-30.
  • 8Wen F A,Liang C G. Displacement Analysis of the 6--6 Stewart Platform Mechanisms[J]. Mechanism and Machine Theory, 1994,29(4) :547-557.
  • 9Joshi S A,Tsai L W. The Kinematics of a Class of 3 --dof, 4--leggecl Parallel Manipulators[J]. ASME Journal of Mechanical Design, 2003, 125 (1) ; 52- 60.
  • 10Jun S H, Zhengg L Q, Liang G. Direct Positional Analysis for a Kind of 5--5 Platform in Parallel Robotic Mechanism[J]. Mechanism and Machine Theory, 1999, 34:285-301.

共引文献28

同被引文献32

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部