期刊文献+

Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential 被引量:10

Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential
下载PDF
导出
摘要 Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis. Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
机构地区 School of Astronautics
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期423-436,共14页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China(No.10632040)
关键词 fractional exponential nonlinearity harmonic balance method with alter-nating frequency/time (HB-AFT) domain technique global response stability fractional exponential nonlinearity, harmonic balance method with alter-nating frequency/time (HB-AFT) domain technique, global response, stability
  • 相关文献

参考文献3

二级参考文献16

  • 1胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 2[1]Xu M T,Cheng D L. A new approach to solving a type of vibration problem[J]. Journal of Sound and Vibration,1994,177(4):565-571.
  • 3[2]Lau S L, Chenung Y K, Wu S Y. Incremental har-monic balance method with multiple time scales for a periodic vibration of nonlinear system[J]. Journal of Mechanics,1983,50:816-871.
  • 4[3]Urabe M. Galerkin's procedure for nonlinear perio-dic systems[J]. Archives for Rational Mechanics and Analysis,1965,20:120-152.
  • 5[4]Urabe M, Beiter A. A numerical computation ofnonlinear forced oscillations by Galerkin procedure[J]. Journal of Mathematical Analysis and Applica-tions,1966,14:107-140.
  • 6[5]Sundararajan P, Noah S T. Dynamics of forced non-linear systems using shooting/arc-length continua-tion method application to rotor system[J]. ASME Journal of Vibration and Acoustics,1997,199:9-20.
  • 7[8]Xu Jianxue, Jiang Jun. The global bifurcation char-acteristics of force van der pol oscillator[J]. Chaos,Solitons and Fractals,1996,7(1):3 -19.
  • 8Lee T W,J Mech Trans Auto Des,1983年,105卷,534页
  • 9张文,固体力学学报,1981年,3期,317页
  • 10Ozguven H N, Houser D R. Mathematical models used in gear dynamics - a review. Journal of Sound and Vibration,1988,121(3):383-411.

共引文献35

同被引文献44

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部