期刊文献+

脆性岩石扩容起始应力预测——以花岗岩和闪长岩为例 被引量:15

PREDICTION OF INITIATION STRESS OF DILATION OF BRITTLE ROCKS
原文传递
导出
摘要 采用TAW–2000电液伺服岩石三轴试验机,通过32组花岗岩和闪长岩的物性及单轴压缩试验测试,获得岩石的特征物理力学参数。在此基础上,揭示岩石扩容起始应力与弹性模量、泊松比和孔隙度的关系,建立花岗岩和闪长岩的扩容起始应力预测方程。研究结果表明:(1)弹性模量作为岩石的弹性基质刚度的反映,包括颗粒间的接触刚度和颗粒间基质的刚度,孔隙度作为岩石内部孔洞空间的体积测量指标,是岩石内初始的微裂纹、微孔洞及张开裂纹的综合反映,一定程度上可以反映初始损伤的程度,二者与岩石的扩容起始应力密切相关;(2)扩容起始应力与弹性模量呈正相关,而与孔隙度呈负相关,当弹性模量最小而孔隙度最大时对应最小的扩容应力值,反之调整;(3)通过逐步数据拟合分析得出扩容应力的预测模型,通过与试验结果的对比分析,证明预测模型的可靠性。在弹性模量、孔隙度和泊松比已知的前提下,可以先验地对扩容起始应力进行预测,为扩容起始应力的求解提供一条新的思路。 The Servo-controlled triaxial rock testing system TAW - 2000 was used to obtain the characteristic mechanical parameters of 32 group of rock samples of granite and diorite. The relationships of the initiation stress of dilation(crack damage stress) with the elastic modulus, Poisson's ratio and the porosity were established resulting in a simplified model for crack damage stress. The elastic modulus is a measure of overall rock stiffness including the stiffness of grain to grain contacts and the intergranular matrix. The porosity is a measure of void space in the rock consisting primary of fissures, pores and open cracks. They are both closely related to the initiation stress of rock dilation. The initiation stress of dilation is correlated positively with the elastic modulus, and negatively with the porosity. A mathematical model for the initiation stress of dilation was obtained through data fitting the test results. The model can be used to calculate the initiation stress of dilation once the elastic modulus, the porosity and Poisson's ratio are known.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2014年第4期737-746,共10页 Chinese Journal of Rock Mechanics and Engineering
基金 国家重点基础研究发展计划(973)项目(2010CB731501) 国家自然科学基金资助项目(41227901 41272352)
关键词 岩石力学 扩容起始应力 预测模型 单轴压缩试验 孔隙度 弹性模量 rock mechanics initiation stress of dilation prediction model uniaxial compressive test porosity elastic modulus
  • 相关文献

参考文献20

  • 1柴红保,曹平,赵延林,等.花岗岩板渐进破坏过程的微观研究[J].岩土工程学报,2010,32(7):1048-1053.
  • 2HOEK E. Rock fracture under static stress conditions[M]. [S.I.].. [s.n.], 1965.
  • 3COOK N G W. An experiment proving that dilatancy is a pervasive volumetric property of brittle rock loaded to failure[J]. Rock Mechanics, 1970, (2): 181 - 188.
  • 4ACI. ACI- 318- 89 Building code requirements for reinforced concrete[S]. Detroit: American Concrete Institute, 1989.
  • 5PALCHIK V. Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones[J]. Rock Mechanics and Rock Engineering, 1999, 32(4): 303 - 309.
  • 6GOKCEOGLU C, ZORLU K. A fuzzy model to predict the uniaxial compressive strength and modulus of elasticity of problematic rocks[J] Engineering Applications of Artificial Intelligence, 2004, 17(1): 61 - 72.
  • 7AL-SHAYEA N A. Effect of testing methods and conditions on the elastic properties of limestone rock[J]. Engineering Geology, 2004, 74(1/2): 139 - 156.
  • 8VASARHELYI B. Statistical analysis of the influence of water content on the strength of the Miocene limestone[J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 69-76.
  • 9SONMEZ H, TUNCAY E, GOKCEOGLU C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 717-729.
  • 10DUNN D E, LAFOUNTAIN L J, JACKSON R E. Porosity dependence and mechanism of brittle fracture in sandstones[J]. Journal of Geophysical Research, 1973, 78(14): 2 403 - 2 417.

同被引文献205

引证文献15

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部