期刊文献+

六角形格林函数节块法 被引量:2

Hexagonal Green Function Nodal Method
下载PDF
导出
摘要 本文基于保角变换思想将格林函数节块法应用于六角形几何,该模型采用保角变换将六角形节块变换为矩形节块,对变换后的矩形节块扩散方程横向积分并应用第二类边界条件的格林函数法进行求解。基于此模型编制了堆芯三维多群稳态程序NACK。利用NACK程序计算了不带反射层二维VVER-1000、三维两群VVER-440和带不连续因子的二维基准题。计算结果表明,有效增殖因数keff的误差均小于50pcm,组件功率分布最大相对误差小于2%,验证了程序的正确性。 Based on the conformal mapping,Green function method was applied in hexagonal geometry.Conformal mapping was used to map a hexagonal node to a rectangular node before transverse integration.Then,the transverse integration equations were resolved using Green function method with the second boundary condition.A threedimensional multi-energy-groups static program NACK was programmed based on those theories.The code was verified by VVER-1000-type core without the reflector,VVER-440-type three-dimensional two-energy-groups core and two-dimensional core with discontinuity factors.The eigenvalue error is less than 50pcm,and the maximum relative error of the node average power is less than 2%.The accuracy of NACK is as good as that of other advanced node method codes.
作者 安萍 姚栋
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第4期667-672,共6页 Atomic Energy Science and Technology
关键词 保角变换 格林函数 横向积分 源迭代 conformal mapping Green function transverse integration source iteration
  • 相关文献

参考文献11

  • 1LAWRENCE R D. A nodal Green's function method for muhidimensional neulron diffusion calculations [D]. US= University of Illinois.1979.
  • 2胡永明,赵险峰.第二类边界条件先进格林函数节块法[J].清华大学学报(自然科学版),1998,38(4):17-21. 被引量:16
  • 3CHAO Y A, TSOULFANIDIS N. Conformal mapping and hexagonal nodal methods, I: Mathematical foundation[J]. Nucl Sci Eng, 1995, 121(2): 202-211.
  • 4CHAO Y A, SHATILLA Y A. Conformal map- ping and hexagonal nodal methods, [I : Imple- mentation in the ANC H code[J]. Nucl Sei Eng, 1995, 121(2).. 212- 225.
  • 5CHO N Z, KIM Y H. Extension of analytic function expansion nodal method to multi group problems in hexagonal Z geometry[J]. Nucl Sci Eng, 1997, 126(3): 35-47.
  • 6GRUNDMANN U. HEXNOD23: A two and three dimensional nodal code for neutron {lux cal-culation of thermal reactors with hexagonal ge- ometry, ZFK-557[R]. [S. 1. ][s. n. ], 1985.
  • 7ARKUSZEWSKI J J. SIXTUS-2.. A two dimen- sional multi-group di{fusion code in hexagonal ge- ometry[J]. Progress in Nuclear Energy, 1986, 18(2) : 123-130.
  • 8张少泓.六角形节块三维多群时一空中子动力学方程组的数值解法及群论在六角形节块方法中的应用研究[D].西安:西安交通大学,1997.
  • 9CHO J Y, KIM C H. Polynomial expansion nod- al method for hexagonal core analysis[J]. Tran Am Nucl Soc, 1995, 73(1): 179-185.
  • 10倪东洋,咸春宇.应用不连续因子修正的六角形解析节块方法[J].核动力工程,2010,31(2):1-5. 被引量:3

二级参考文献8

  • 1吴宏春,咸春宇.核反应堆燃料管理与优化[M].西安:西安交通大学出版社,2004.
  • 2Lawrence R D.The DIF3D Nodal Neutronics Option for Two-and Three-Dimensional Diffusion Theory Calculations in Hexagonal Geometry[R].ANL-83-1,1983.
  • 3Lawrence R D.Progress in Nodal Methods for the Solution of the Diffusion and Transport Equations[J].Progress in Nuclear Energy,1986,17(3):271-301.
  • 4Wagner M.R.Three-Dimensional Nodal Diffusion and Transport Theory Methods for Hexagonal-z Geometry[J].Nucl Sci Eng,1989,103 (5):377-391.
  • 5Grundmann U.HEXNOD23:A Two-and Three-Dimen-sional Nodal Code for Neutron Flux Calculation of Thermal Reactors with Hexagonal Geometry[R].ZFK-557,1985.
  • 6Cho N Z.Noh J M.Analytic Function Expansion Nodal Method for Hexagonal Geometry[J].Nuclear Science and Engneering,1995,121 (3):245-252.
  • 7Kim S W,Cho N Z.The Analytic Function Expansion Method for Hexagonal Geometry.Nuclear Science and Engneering,2001,139 (3):156-169.
  • 8胡永明,清华大学学报,1995年,35卷,3期,1页

共引文献17

同被引文献3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部