摘要
研究一致凸Banach空间中集值渐近拟非扩张映射的关于有限步迭代序列逼近公共不动点的充分必要条件,并在此条件下,证明了该序列收敛到公共不动点的一些强收敛定理,所得结果是单值映射情形的推广和发展.
In this paper, the necessary and sufficient conditions of set-valued asymptotically quasi- nonexpansive mapping for approximating common fixed point of a finite step iterative are studied in uniformly convex Banach spaces, and some strong convergence theorems for this scheme are proved, the results presented in this paper generalizes and develops some known results of single- valued mapping.
出处
《应用泛函分析学报》
CSCD
2014年第1期73-78,共6页
Acta Analysis Functionalis Applicata
基金
国家自然科学基金(11371013)
关键词
一致凸BANACH空间
集值渐近拟非扩张映射
有限步迭代序列
公共不动点
收敛定理
uniformly convex Banach space
set-valued asymptotically quasi-nonexpansive map-ping
finite-step iteration process
common fixed point
convergence theorems