期刊文献+

复杂网络匹配系数控制算法

On the algorithm of controlling of matching coefficient of complex networks
下载PDF
导出
摘要 针对CAIDA提供的探测数据进行分析,得到互联网AS级宏观拓扑结构的随时间演化情况,在对匹配系数进行深入分析的基础上,提出了一种单调改变网络匹配系数的算法———边重连算法。该算法可以在两个方向上构造具有连续匹配系数的网络集合,选择向同配方向重连则可构建匹配系数渐进增大的连续匹配系数网络,选择向异配方向重连则可构建匹配系数不断减小的连续匹配系数网络,当边重连足够充分时可以得到具有极大匹配系数或极小匹配系数的网络。 According to the analysis of the detection data provided by CAIDA, the AS level topology of the internet developed by the time is found. On the basis of the deep analysis of the matching coeffi- cient, an algorithm, named Edges Rewiring, is proposed, which can monotonously change the coefficient of the matched network. This algorithm can construct a network set with continuous matching co- efficient in two directions. It can construct the crescent continuous net of matching algorithm network when choosing the same direction of reconnection, and it can construct the decreasing continuous matching algorithm when choosing the opposite direction of reconnection. The network with the maximal matching coefficient or with the minimal matching coefficient can be constructed when the number of ed- ges rewiring is enough.
作者 关世杰
机构地区 沈阳工学院
出处 《计算机工程与科学》 CSCD 北大核心 2014年第4期634-638,共5页 Computer Engineering & Science
关键词 复杂网络 互联网AS级 网络拓扑 CAIDA complex networks AS-level internet network topology degree CAIDA
  • 相关文献

参考文献11

  • 1Xu T, Chen J, He Y, et al. Complex network properties of Chinese power grid [J]. International Journal of Modern Physics B, 2004, 18(17):2599-2603.
  • 2Wang F, Qiu J, Yu H. Research on the cross-citation rela tionship of core authors in seientometrics. Scientomet- rics, 2012, 91(3) :1011-1033.
  • 3Wang Z, Liu Y, Li M, et al. Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays [J]. IEEE Transactions on Neural Networks, 2006, 17(3): 814-820.
  • 4Kitsak M, Gallos L K, Havlin S, et al. Identification of in fluential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888 -893.
  • 5Shao J, Buldyrev S V, Braunstein L A, et al. Structure of shells in complex networks[J], Physical Review E, 2009, 80 (3) :036105.
  • 6Vespignani A. Complex networks= The fragility of interde pendency. Nature, 2010, 464(7291):984-985.
  • 7Shao J, Buldyrev S V, Cohen R, et al. Fractal boundaries of complex networks. EPL (Europhysics Letters), 2008, 84(4) :48004.
  • 8Watts D J, Strogatz S H. Collective dynamics of small world networks. Nature, 1998,393(6638) :440-442.
  • 9Arabsi A L, Albert R. Emergence of scaling in random net works. Science, 1999, 286(5439):509-512.
  • 10Newman M E J. Assortative mixing in networks. Physi- cal Review Letters, 2002,89(20):208701.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部