期刊文献+

基于主成分分析的图像自适应阈值去噪算法 被引量:10

Adaptive Threshold Image Denoising Algorithm Based on Principal Component Analysis
下载PDF
导出
摘要 主成分分析(PCA)是一种将多个变量通过线性变换选出较少个数重要变量的一种多元统计方法。在图像去噪中,由于图像的局部相似性,提出一种新的有效的去除噪声的算法。通过块匹配法寻找出相似块作为训练样本,利用主成分分析提取信号的主要特征,然后根据统计理论中最小均方误差方法构造线性自适应阈值方程,对含噪图像的每一块进行自适应阈值去噪。实验结果表明,该方法能有效去除图像的高斯白噪声,并同时能很好的保持边缘等的细节信息。 Principal component analysis (PCA) is a multivariate statistical method which selects a few important variables through a linear transformation of Multiple variables. In image denoising, because of the local similarity of images, a new and effective noise removal algorithm is put forwarded. The similar blocks are found out as training samples by block matching algorithm and the main signal feature extraction is extracted by PCA, and then, an adaptive threshold is used to each denoised block to remove noise. The experimental results show that the method can effectively remove the image of Gauss white noise, and at the same time, can be very good to keep the edge detail information.
出处 《红外技术》 CSCD 北大核心 2014年第4期311-314,319,共5页 Infrared Technology
关键词 主成分分析 块匹配 自适应阈值 图像去噪 principal component analysis, block match, adaptive threshold, image denoising
  • 相关文献

参考文献15

  • 1R C Gonzalez, R E Woods. Digital Image Processing[M]. seconded, Pretice Hall, Englewood Clift, N J, 2002.
  • 2Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans. on hlormation Theao', 1995, 41 ( 3): 613 -627.
  • 3Chang S G, Yu B, Vetterli M. Adaptive wavelets thresholding for image denoising and compression[J]. IEEE Trans. on Image Processing, 2000, 9(9): 1532-1546.
  • 4Shensa M J. The discrete wavelet transform: wedding matlat algorithms[J]. IEEE Trans. on Signal Processing the fitrous and , 1992, 40(10): 2464-2482.
  • 5J L Starck, E J Candes, D L Donoho. The curvelet translbrmfor image denoising[J]. IEEE Transaction on Image Processing, 2002, i1(6): 670-684.
  • 6G Y Chen, B Kegl. Image denosing with complex ridgelets[J]. Pattern Recognition, 2007, 40(2): 578-585.
  • 7M Elad, M Aharon. Image denoising representation over learned dictionaries[J]. processing, 2006, 15(12): 3736-3745.
  • 8via sparse and redundant 1EEE Transaction on image M Aharon, M Elad, A M Bruckstein. The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transaction on Signal Processing, 2006, 54(11): 4311-4322.
  • 9D D Muresan, T W Parks. Adaptive principal components and image denoising[C]//Proceedings of the 2003 International Conference on Image Procesing, 2003:1101-1104.
  • 10芮挺,王金岩,沈春林,丁健.基于PCA的图像小波去噪方法[J].小型微型计算机系统,2006,27(1):158-161. 被引量:12

二级参考文献35

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2谭毅华,田金文,柳健.基于小波局部统计特性的图像去噪方法[J].信号处理,2005,21(3):296-299. 被引量:8
  • 3冯鹏,米德伶,潘英俊,魏彪,金炜.改进的Curvelet变换图像降噪方法[J].光电工程,2005,32(9):67-70. 被引量:14
  • 4Chandler D M,Hemami S S.VSNR:A Wavelet-based Visual Signal-to-noise Ratio for Natural Images[J].IEEE Transactions on Image Processing,2007,16(9):2284-2298.
  • 5Bradley A P.A Wavelet Visible Difference Predictor[J].IEEE Transac-tions on Image Processing,1999,8(1):717-730.
  • 6Sarnoff Corporation.Jndmetrix Technology[EB/OL].(2010-05-10).http://www.sarnoff.com/.
  • 7Lubin J.Method and Apparatus for Assessing the Visibility of Differen-ces Between Two Image Sequences[P].USA Patent:5974159,1999.
  • 8Watson A B,Solomon J A.A Model of Visual Contrast Gain Control and Pattern Masking[J].Journal of the Optical Society of America,1997,14(9):2378-2390.
  • 9Chandler D M,Hemami S S.Dynamic Contrast-based Quantiza-tion for Lossy Wavelet Image Compression[J].IEEE Transactions on Image Processing,2005,14(4):397-410.
  • 10Wang Zhou.Image Quality Assessment:From Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.

共引文献36

同被引文献157

引证文献10

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部