期刊文献+

基于粗糙集方法的决策树多值偏向理论分析 被引量:2

The Theory Analysis of ID3 Algorithm Variety Bias Based Rough Set
下载PDF
导出
摘要 ID3决策树算法是构造决策树的重要算法之一,然而实验表明该算法在选择分裂属性时存在着多值偏向问题。以往的大多数学者都是基于实验分析多值偏向问题。该文针对这个问题,基于粗糙集理论及凹函数性质,引入函数重要度概念,从理论上分析多值偏向问题,并分析了属性多值对属性的重要度的影响。最后实验验证该理论分析方法的正确性与可行性。 As one of the classical algorithms for building a decision tree,the ID3,has a problem of tending to choose the attribute which has more different values. This problem is also called multi-value bias. Most scholars used to research the multi-value bias based on the experiment. To address this problem,this paper,based on rough set theory and concave function,introduces a concept called attribute importance concept,presents a theoretical analysis of the multi-value bias problem. This paper further analyzes the influence of attribute's multi-value on the other attribute. Lastly,the result of experimental proves this theoretical method correct and feasible.
出处 《杭州电子科技大学学报(自然科学版)》 2014年第2期41-44,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 决策树算法 粗糙集 信息增益 多值偏向 属性重要度 decision algorithm rough set information gain multi-value bias attributes importance index
  • 相关文献

参考文献7

二级参考文献30

共引文献195

同被引文献33

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部