期刊文献+

自适应反向竞争和声搜索算法及其优化 被引量:2

Self-adapted Harmony Search Algorithm with Opposed Competition and Its Optimization
下载PDF
导出
摘要 提出一种自适应反向竞争和声搜索算法.该算法简单分析和声搜索算法步长设置的盲目性,提出一种自适应步长调整操作.算法融合反向学习策略的优势,建立末位淘汰竞争选择机制,以进一步提高算法的全局搜索能力,防止算法陷入局部最优.为验证文中算法的有效性,优化经典测试函数,数值结果表明文中算法在精度和鲁棒性方面比和声搜索算法及目前较优的改进和声搜索算法更好.最后通过优化求解热交换器和减速器设计问题,证明文中算法求解结果优于其他算法. A self-adapted harmony search algorithm with opposed competition ( SHSOC ) is proposed. The blindness of bandwidth setting of harmony search algorithm is analyzed. The adaptive bandwidth adjustment is employed. Meanwhile, the superiority of the opposed learning strategy is integrated into the proposed algorithm, and the competition selection mechanism of end elimination is established to further improve global search ability and keep the algorithm from falling into local optima. The proposed algorithm is tested on several classic functions to evaluate the performance. The numerical results show the superiority of SHSOC in accuracy and robustness compared with harmony search algorithm and some state-of-the-art harmony search variants. Moreover, SHSOC can solve the optimization problems of the heat exchanger and the speed reducer design, and the results show that SHSOC is better than any other algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第4期305-312,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60674021)资助
关键词 自适应步长调整 反向学习 竞争选择 精度 Adaptive Bandwidth Adjustment Opposed Learning Competition Selection Accuracy
  • 相关文献

参考文献21

  • 1Geem Z W, Kim J H, Loganathan G V. A New Heuristic Optimiza- tion Algorithm: Harmony Search. Simulation, 2001,76(2) : 60-68.
  • 2Sivasubramani S, Swarup K S. En Dispatch Using Multi-objective Harmony Search Algorithm. Electric Power Systems Research, 2011, 81 (9) : 1778-1785.
  • 3Sharma K D, Chatterjee A, Rakshit A. Design of a Hybrid StableAdaptive Fuzzy Controller Employing Lyapunov Theory and Harmony Search Algorithm. IEEE Trans on Control Systems Technology, 2010, 18(6): 1440-1447.
  • 4Ayvaz M T. Application of Harmony Search Algorithm to the Solution of Groundwater Management Models. Advances in Water Resources, 2009, 32(6) : 916-924.
  • 5Zou D X, Gao L Q, Wu J H, et al. A Novel Global Harmony Search Algorithm for Reliability Problems. Computers and Industrial Engi- neering, 2010, 58(2) : 307-316.
  • 6Mahdavi M, Fesanghary M, Damangir E. An Improve Harmony Search Algorithm for Solving Optimization Problems. Applied Math- ematics and Computation, 2007, 188(2) : 1567-1579.
  • 7Omran M G H, Mahdavi M. Global-Best +Harmony Search. Applied Mathenmtics and Computation, 2008, 198(2) : 643-656.
  • 8Wang C M, Huang Y F. Self-adaptive Harmony Search Algorithm for Optimization. Expert Systems with Applications, 2010, 37 (4): 2826 -2837.
  • 9Pan Q K, Suganthan P N, Tasgetiren M F, et al. A Self-adaptive Global Best Harnmny Search Algorithm for Continuous Optimization Problems. Applied Mathematics and Computation, 2010, 216 (3) : 830-848.
  • 10Chen J, Pan Q K, Li J Q. Htlmlony Search Algorithm with Dynamic Control Parameters. Applied Mathematics and Computation, 2012, 219(2) : 592-604.

二级参考文献15

  • 1He S,Wu Q H,Saunders J R. A Novel Group Search Optimiza tion Inspired By Animal Behavioral Ecology [C]//IEEE Con- gress on Evolutionary Computation. 2006:1272-1278.
  • 2Vickery W L, Giraldeau L A, Templeton J J, et al. Producers, scroungers,and group foraging[J]. American Naturalist, 1991, 137(6) : 847-863.
  • 3He S,Wu Q H, Saunders J R. Group Search Optimizer:An Opt mization Algorithm Inspired by Animal Searching Behavior[J]. IEEE Transactions on Ew)lutionary Computation, 2009,13 ( 5 ) 973-990.
  • 4Yao X, Liu Y, Liu G. Evolutionary programming made faster [J]. IEEE Transactions on Evolutionary Computation, 1999,3 (2):82-102.
  • 5Yao X,Liu Y. Fast evolution strategies[M]. Evolutionary Pro- gramming VI, Berlin, Germany: Springer-Verlag, 1997 : 151-161.
  • 6Qin G,Liu F, Li L, et al. A Quick Group Search Optimizer andIts Application to the Optimal Design of Double Layer Grid Shells[C]//The 2nd International ISCM Symposium and The 12th International EPMESC Conference. 2009.
  • 7Tizhoosh H. Opposition-based learning:A new scheme for ma- chine intelligence[C]//Proceedings of the International Confe- rence on Computational Intelligence for Modeling Control and Automation. 2005 : 695-701.
  • 8王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.
  • 9汪靖.群体智能优化算法及其在GPU上的并行化研究[D].武汉:武汉大学,2011.
  • 10Rahnamayan S, Tizhoosh H R, Salama M M. Opposition-based differential evolutiona [J]. IEEE Transactions on Evolutionary Computation, 2008,12 ( 1 ) : 64-79.

共引文献24

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部