摘要
粒度支持向量机(GSVM)在处理分布均匀的数据集时较有效,但现实生活中数据集的分布往往是不可预测的,且分布不均匀.文中提出一种动态粒度支持向量机(DGSVM)学习算法,根据粒的不同分布自动粒划分,使SVM可在不同层次的粒上训练.标准数据集上的实验表明,与GSVM相比,DGSVM具有更好的分类性能.
Granular support vector machine ( GSVM ) is effective when dealing with distribution uniform datasets. However, the distribution of the dataset in the real world is unpredictable, and the density is uneven. In this paper, a dynamic granular support vector machine learning algorithm ( DGSVM ) is proposed. According to the different distribution of the granules, some granules are divided automatically and SVM training is performed on different levels of granule space. The experimental results on benchmark datasets demonstrate that DGSVM algorithm obtains better classification performance compared with GSVM.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2014年第4期372-377,共6页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.60975035
61273291)
山西省回国留学人员科研项目(No.2012-008)
山西省研究生教育创新项目(No.2013-3001)资助