期刊文献+

动态粒度SVM学习算法 被引量:5

Dynamic Granular Support Vector Machine Learning Algorithm
下载PDF
导出
摘要 粒度支持向量机(GSVM)在处理分布均匀的数据集时较有效,但现实生活中数据集的分布往往是不可预测的,且分布不均匀.文中提出一种动态粒度支持向量机(DGSVM)学习算法,根据粒的不同分布自动粒划分,使SVM可在不同层次的粒上训练.标准数据集上的实验表明,与GSVM相比,DGSVM具有更好的分类性能. Granular support vector machine ( GSVM ) is effective when dealing with distribution uniform datasets. However, the distribution of the dataset in the real world is unpredictable, and the density is uneven. In this paper, a dynamic granular support vector machine learning algorithm ( DGSVM ) is proposed. According to the different distribution of the granules, some granules are divided automatically and SVM training is performed on different levels of granule space. The experimental results on benchmark datasets demonstrate that DGSVM algorithm obtains better classification performance compared with GSVM.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第4期372-377,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60975035 61273291) 山西省回国留学人员科研项目(No.2012-008) 山西省研究生教育创新项目(No.2013-3001)资助
  • 相关文献

参考文献21

  • 1Yao Y Y. Perspectives of Granular Computing/! Proc of the IEEE International Conference on Granular Computing. Beijing, China, 2005, 1:85-90.
  • 2Xu C F, Wang J L. An Efficient Incremental Algorithm for Frequent hemsets Mining in Distorted Databases with Granular Computing// Proc of the International Conference on Web Intelligence. Hong Kong, China, 2006:913-918.
  • 3Yao Y Y. Granular Computing for Web Intelligence and Brain Infor- matics// Proc of the International Conference on Web Intelligence. Silicon Valley, USA, 2007 : 1-4.
  • 4Tang Y C, Jin B, Zhang Y Q. Granular Support Vector Machines for Medical Binary Classification Problems/! Proc of the IEEE Sym-posium on Computational Intelligence in Bioinformatics and Compu- tational Biology. La Jolla, USA, 2004:73-78.
  • 5Wang W J, Guo H S, Jia Y F, et al. Granular Support Vector Ma- chine Based on Mixed Measure. Neurocomputing, 2013, 101 (4) : 116-128.
  • 6Guo H S, Wang W J, Men C Q. A Novel Learning Model-Kernel Granular Support Vector Machine// Proc of the International Con- ference on Machine Learning and Cybernetics, Baoding, China. 2009, II: 930-935.
  • 7Tang Y C, Jin B, Zhang Y Q. Granular Support Vector Machines with Association Rules Mining for Protein Homology Prediction. Ar- tificial Intelligence in Medicine, 2005, 35( 1 ) : 121-134.
  • 8Yu H, Yang J, Han J W. Classifying Large Data Sets Using SVMs with Hierarchical Clusters//Proc of the 9th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. New York, USA, 2003:306-315.
  • 9Wang W J, Xu Z B. A Heuristic Training in Support Vector Regres- sion[ EB/OLI. [ 2013 -02 - 10 ]. http ://www. sciencedirect, com/ science/article/pii/S0925231203005307 ?via = ihub.
  • 10Chen R C, Cheng K F, Chen Y H, et al. Using Rough Set and Support Vector Machine for Network Intrusion Detection System// Proc of the 1 st Asian Conference on Intelligent Information and Da- tabase Systems. Dong Hoi, Vietnam, 2009 : 465-470.

二级参考文献29

  • 1[3]J C Burges.A tutorial on support vector machine for pattern recognition.Data Mining and Knowledge Discovery,1998,2(2):121-167
  • 2[5]S Amari,S Wu.Improving support vector machine classifier by modifying kernel function.Neural Networks,1999,12(6):783-789
  • 3[6]C Soares,P B Brazdil,P Kuba.A meta-learning method to select the kernel width in support vector regression.Machine Learning,2004,54(33):195-209
  • 4[7]O Chapelle,V Vapnik.Model selection for support vector machines.In:Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2000.230-236
  • 5[8]N Cristianini,C Chapelle,J Shawe-Taylor.Dynamically adapting kernels in support vector machines.In:Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,1998.204-210
  • 6[9]O Chapelle,V Vapnik,O Bousquet,et al.Choosing multiple parameters for support vector machines.Machine Learning,2002,46(11):131-159
  • 7[1]J Shawe-Taylor,N Cristianini.Kernel Methods for Pattern Analysis.Beijing:China Machine Press,2005
  • 8[2]V Vapnik.The Nature of Statistical Learning Theory.Berlin:Springer-Verlag,1995
  • 9Ingo Steinwart, On the influence of the kernel on the generalization ability of support vector machines. Department of mathematics and computer science, Friedrich Schiller University(Jena): Technical Report TR-01-01, 2001 (Available as http://www. minet. uni-jena. de /Math-Net /reports/rep-com.html).
  • 10Shun-ichi Amari, Si Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks,1999, 12:783-789.

共引文献81

同被引文献28

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部