期刊文献+

基于GLC-KSVD的稀疏表示人脸识别算法 被引量:12

Sparse Representation Face Recognition Algorithm Based on Gabor Feature and Label Consistent K-SVD
下载PDF
导出
摘要 稀疏编码中的字典学习是基于稀疏表示图像分类的核心内容,为此提出了一种基于Gabor特征和标签一致K-SVD(GLC-KSVD)字典学习的稀疏表示人脸识别算法;由于Gabor特征对光照、表情和姿态等具有一定的鲁棒性,首先对图像进行Gabor特征提取,用增广的Gabor特征矩阵来构建初始字典,然后通过字典学习得到原子与类别标签相对应的判别性字典和线性分类器,字典学习模型综合了重建误差、分类误差和稀疏编码误差,通过字典的标签一致约束,同一类别的样本得到相似的编码系数;实验结果表明:该算法具有良好的识别精度和较高的识别效率。 Dictionary learuing in sparse coding is an important content on image classification based on sparse representation. Therefore, a sparse representation face recognition algorithm was proposed based on Gabor feature and Label Consistent K-SVD (GLC-KSVD) dictionary learning. Considering that Gabor fea- ture is robust to variations of illumination, expression and pose, at first the image Gabor features were ex- tracted and used as the augmented Gabor feature matrix to construct the initial dictionary. Then an discrim- inative dictionary and linear classifier was learned simultaneously by the dictionary learning model, which combined the sparse-code error with the reconstruction error and the classification error, and the learned dictionary atoms were corresponded to the class labels. The feature points with the same class labels have similar sparse codes according to the label consistent constraint. Experiment results show that the proposed method has good recognition accuracy and higher recognition efficiency.
作者 封睿 李小霞
出处 《四川兵工学报》 CAS 2014年第4期88-92,共5页 Journal of Sichuan Ordnance
基金 西南科技大学博士基金(053109) 四川省教育厅基金项目(11ZB106)
关键词 稀疏表示 人脸识别 GABOR特征 GLC-KSVD字典学习 sparse representation face recognition Gabor feature GLC-KSVD dictionary learning
  • 相关文献

参考文献14

  • 1WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (2) : 210 -227.
  • 2AHARON M, ELAD M, BRUCKSTEIN A. K-SVD : An algo- rithm for designing nvercomplete dictionaries for sparse rep- resentation [ J ]. IEEE Transactions on Signal Processing, 2006,54( 1 ) :4311 - 4322.
  • 3MAIRAL M, LEORDEANU M, BACH F, et al. Discrimina- tive sparse image models for class-specific edge detection and image interpretation[ C ]//Proceedings of the 10th Eu- ropean Conference on Computer Vision. Marseille, France: Springer ,2008:43 - 56.
  • 4ZHANG W, SURVE A, FEM X, et al. Learning non-redun- dant codebooks for classifying complex objects [ C]//Pro- ceedings of the 26th Annual International Conference on Machine Learning. New York, USA: ACM, 2009:1241 - 1248.
  • 5BOUREAU Y L, BACH F,LECUM Y, et al. Learning mid- level features for recognition [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. San Francisco, CA, USA : IEEE Computer Society, 2010 : 2559 - 2566.
  • 6MAIRAL J,BACH F,PONCE J,et al. Discriminative learn- ed dictionaries for local image analysis[ C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA : IEEE Computer Society ,2008 : 1 - 8.
  • 7PHAM D, VENKATESH S. Joint learning and dictionary construction for pattern recognition [ C ]//proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA : IEEE Computer Society ,2008 : 1 - 8.
  • 8ZHANG Q, LI B X. Discriminative K-SVD for dictionary learning in face recognition [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. San Francisco, CA, USA. IEEE Computer Society,2010:2691 - 2698.
  • 9YANG J, YU K, HUANG T. Supervised translation-invariant sparse coding[ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE Computer Society, 2010: 3517 - 3524.
  • 10胡正平,徐波,白洋.Gabor特征集结合判别式字典学习的稀疏表示图像识别[J].中国图象图形学报,2013,18(2):189-194. 被引量:23

二级参考文献47

  • 1张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 2Zhan Yongzhao, Ye Jingfu, Niu Dejiao. Facial Expression Recog- nition Based on Gabor Wavelet Transformation and Elastic Templates Matching[J]. International Journal of Image and Graphics, 2006, 6(1): 125-138.
  • 3Wright J, Ma Yi, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 4Baraniuk R, Candes E, Elad M. Applications of Sparse Representation and Compressive Sensing[J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 6Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009: 597-604.
  • 7Donoho D L, Elad M, Temlyakov V N. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 8Li Yuanqing, Amari S. Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation[J]. IEEE Transactions on Neural Networks, 2010, 21(7): 1189-1196.
  • 9Kotsia I, Pitas I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines[J]. IEEE Transactions on Image Processing, 2007, 16(1): 172-187.
  • 10Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.

共引文献117

同被引文献109

  • 1郑南宁,付昀,张婷,卓峰.人脸的表情与年龄变换和非完整信息的重构技术(上)[J].电子学报,2003,31(z1):1955-1962. 被引量:7
  • 2吴渊,郑文庭.一种参数化的表情映射方法[J].计算机应用研究,2004,21(10):117-119. 被引量:3
  • 3徐先良,沈萦华,费广正,石民勇.计算机人脸建模和动画技术综述[J].北京广播学院学报(自然科学版),2005,12(1):10-18. 被引量:3
  • 4张满囤,李智,吴鸿涛.表情动画技术和应用综述[J].河北工业大学学报,2007,36(5):89-94. 被引量:3
  • 5白雪飞,李茹.基于2DPCA和RBF神经网络的人脸识别方法[J].计算机工程与应用,2007,43(34):200-203. 被引量:9
  • 6Feng X,Hadid A,Pietikainen M. Facial expression recognition with lo- cal binary patterns and linear programming[J]// Pattern Recognition and hnage Analysis,2005,15( 2):546-549.
  • 7Paul Viola, Michael Jones. Rapid Object Detection using a Boosted Cascade of Simple Features[C]//Accepted Conference on Computer Vision and Pattern Recognition,2001.
  • 8Yang Peng Lv, Shang Fei Wang. A spontaneous facial expression rec- ognition method using head motion and AAM features[C]//2010 Sec- ond World Congress on Nature and Biologically Inspired Computing, 2010:334-339.
  • 9Nayyar A ZaidkDavid McG Squire.Local Adaptive SVM for Object Recognition[C]//2010 Digital linage Computing: Techniques and Ap- plications, 2010:196-201.
  • 10Tae-Ki An, Moon-Hyun Kim. A New Diverse AdaBoost Classifier[C] //2010 International Conference on Artificial Intelligence and Compu- tational Intelligence, 2010:359-363.

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部