期刊文献+

多观测样本联合信息加权稀疏表示分类算法 被引量:3

Multiple Observation Sets Classification Algorithm Based on Joint Weighted Sparse Representation
下载PDF
导出
摘要 多观测样本分类问题中,同一对象的多观测样本均看作一个整体进行识别,其同等看待各个观测样本。考虑到其每个观测样本包含判别信息量不同,针对如何有效利用其可信度问题,提出基于观测样本联合加权稀疏表示多观测样本分类算法。首先将多观测样本分解成单样本,分别对各个样本进行稀疏求解得到其各自的稀疏度和残差,进而联合二者确定其相应可信度。然后给各观测样本进行可信度加权,重构出加权多观测样本。最后,再采用整体稀疏表示对其进行分类。在ETH-80物体数据库、CMU-PIE人脸数据库和BANCA数据库上进行大量对比实验,实验结果证明该算法的有效性,提高识别精度的同时使算法的鲁棒性得到保证。 In classification problem of multiple observation sets,multiple observations of the same object were viewed as a whole for recognition,which respect all single samples equally.Considering the different amount of discriminative information from each single sample,with regard to how to exploit their respective different discriminant information,multiple observation sets classification algorithm based on joint sample weighted sparse representation is proposed.Multiple observation sets are first divided into single samples and each sample is processed separately by a sparse solution,obtained its respective sparsity and residual,then use them jointly to obtain its different reliability.After that,each single sample is weighted by corresponding reliability,the weighted multiple observation sets are reconstructed.Lastly,the classification is completed by global sparse representation.Extensive comparative experiments are conducted on ETH-80 object dataset,CMU-PIE face dataset and BANCA datasets,the results verify the effectiveness of the proposed algorithm,enhancing the recognition accuracy and the robust of the algorithm.
出处 《信号处理》 CSCD 北大核心 2014年第4期413-421,共9页 Journal of Signal Processing
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297)
关键词 多观测样本分类 联合稀疏表示 重构样本 可信度加权 判别信息 multiple observation sets classification joint sparse representation reconstructed samples reliability weighted discriminative information
  • 相关文献

参考文献14

  • 1Yiqun Hu,Mian A.S,Owens R.Face Recognition Using Sparse Approximated Nearest Points between Image Sets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):1992-2004.
  • 2Ohkawa Y,Fukui K.Hand Shape Recognition Using the Distributions of Multi-Viewpoint Image Sets[J].IEICE Transactions on Information and Systems,2012,95-D(6):1619-1627.
  • 3Harandi M T,Sanderson C,Shirazi S,Lovell B C.Graph Embedding Discriminant Analysis on Grassmannian Manifolds for Improved Image Set Matching[C]// In Proc.Computer Vision and Pattern Recognition (CVPR),2011:2705-2712.
  • 4Shakhnarovich G,Fisher J W,Darrel T.Face recognition from long-term observations[C]//European Conference on Computer Vision(ECCV),2002,3:851-868.
  • 5Arandjelovic O,Shakhnarovich G,Fisher J,Cipolla R,Darrell T.Face recognition with image sets using manifold density divergence[C]// In Proc.Computer Vision and Pattern Recognition (CVPR),2005,1:581-588.
  • 6KimT K,Kittler J,Cipolla R.Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations[J].PAMI,2007,29(6):1005-1018.
  • 7Wang R,Shan S,Chen X,Gao W.Manifold-Manifold Distance with Application to Face Recognition based on Image Set[C]//In Proe.Computer Vision and Pattern Recognition (CVPR),2008:2940-2947.
  • 8Wang R,Chen X.Manifold Discriminant Analysis[C]//In Proc.Computer Vision and Pattern Recognition (CVPR),2009:429-436.
  • 9Hotelling H.Relations between Two Sets of Variates[J].Biometrika,1936,28(34):321-372.
  • 10Cevikalp H,Triggs B.Face Recognition Based on Image Sets[C]//In Proc.Computer Vision and Pattern Recognition (CVPR),2010:2567-2573.

同被引文献35

  • 1曾琰.国企收购PPP项目公司股权的法律风险探讨[J].建筑经济,2020(S01):214-216. 被引量:2
  • 2Kim T K,Kittler J,Cipolla R.On-line learning of mutually orthogonal subspaces for face recognition by image sets[J].IEEE Transactions on Signal Processing,2010,19(4):1067-1074.
  • 3Shakhnarovich G,Fisher J W,Darrel T.Face recognition from long-term observations[C]//Proceedings of European Conference on Computer Vision(ECCV),2002,3:851-868.
  • 4Arandjelovic O,Shakhnarovich G,Fisher J,et al.Face recognition with image sets using manifold density divergence[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),2005,1:581-588.
  • 5Cardinaux F,Sanderson C,Bengio S.User authentication via adapted statistical models of face images[J].IEEE Transactions on Signal Processing,2006,54(1):361-373.
  • 6Yamaguchi O,Fukui K,Maeda K,et al.Face recognition using temporal image sequence[C]//Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition,1998:318-323.
  • 7Sakano H,Mukawa N.Kernel mutual subspace method for robust facial image recognition[C]//Proceedings of the 4th International Conference on Knowledge-based Intelligent Engineering Systems and Allied Technologies,2000,1:245-248.
  • 8Wang R P,Shan S G,Chen X L,et al.Manifold-manifold distance with application to face recognition based on image set[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),2008:1-8.
  • 9Zhu X,Ghahramani Z.Learning from labeled and unlabeled data with label propagation,Technical Report CMU-CALD-02-107[R].Carnegie Mellon University,2002.
  • 10Kokiopoulou E,Pirillos S,Brossard P.Graph-based classification of multiple observation sets[J].Pattern Recognition,2010,43(12):3988-3997.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部