期刊文献+

梁动力学问题重心有理插值配点法 被引量:3

Barycentric rational interpolation collocation method for solving dynamic problems of Euler-Bernoulli beams
下载PDF
导出
摘要 提出数值求解梁动力学问题的高精度重心有理插值配点法。采用重心有理插值张量积形式近似梁在任意时刻及位置挠度,运用配点法获得梁动力学问题控制方程与初边值条件的离散代数方程组。利用微分矩阵与矩阵张量积运算记号,将离散后代数方程组写成简洁矩阵形式。通过置换法施加边界条件及初始条件求解代数方程组,获得梁动力学问题在计算节点处位移值。数值算例表明,重心有理插值配点法具有算式简单、计算节点适应性好、程序实施方便、计算精度高等优点。 The barycentric rational interpolation collocation method (BRICM) for solving dynamic problems of Euler-Bernoulli beams with high accuracy was presented. The deflections of a beam at anytime and anywhere were approximated with a tensor product form of barycentric rational interpolation in time domain and spatial domain, respectively. The discrete algebraic equations for governing equations, initial conditions and boundary conditions of a beam dynamic problem were constructed using the collocation method. Using notations of differentiation matrix and tensor product of matrices, the system of algebraic equations was written as a simple matrix form. The beam deflections on computational nodes were obtained by solving the system of algebraic equations with the replacement method to apply initial and boundary conditions. The numerical examples demonstrated that BRICM has merits of simple computational formulation, good applicability of node type, easy to program and high precision.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第22期41-46,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51005137) 山东建筑大学研究生教育创新计划(YC1005)
关键词 EULER-BERNOULLI梁 动力学问题 重心有理插值 微分矩阵 重心有理插值配点法 Euler-Bernoulli beam dynamic problem barycentric rational interpolation differentiation matrix barycentric rational interpolation collocation method
  • 相关文献

参考文献21

  • 1Rao S S.Mechanical vibration(3rd edition)[M].Reading,Mass:Prentice Hall,2004.
  • 2Han S M,Haym B,Wei T.Dynamics of transversely vibrating beams using four engineering theories[J].Journal of Sound and Vibration,1999,225 (5):935-988.
  • 3Hong S W,Kang B S,Park J Y.Dynamic analysis of bending-torsion coupled beam structures using exact dynamic elements[J].International Journal of the Korean Society of Precision Engineering,2003,4(1):15-22.
  • 4Auciello N M,Rosa M A D.Two approaches to the dynamic analysis of foundation beams subjected to subtangential forces[J].Computers and Structures,2004,82:519-524.
  • 5Tomasiello S.Differential quadrature method:application to initial-boundary-value problems[J].Journal of Sound and Vibration,1998,218(4):573-585.
  • 6Shu C,Du H.Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates[J].Int.J Solids Structures,1997,34(7):819-835.
  • 7Smith R C,Bowers K L,Lund J.A fully Sinc-galerkin method for Euler-Bernoulli beam models[J].Numerical Methods for Partial Differential Equations,1992,8(2):171-202.
  • 8Smith R C,Bowers K L,Vogel C R.Numerical recovery of material parameters in Euler-Bernoulli beam models[J].Journal of Mathematical Systems,Estimation and Control,1997,7(2):157-195.
  • 9Wu T Y,Liu G R,Wang Y Y.Application of the generalized differential quadrature rule to initial-boundary-value problems[J].Journal of Sound and Vibration,2003,264:883-891.
  • 10Zong Z,Lam K Y.A localized differential quadrature (LDQ)method and its application to the 2D wave equation[J].Computational Mechanics,2002,29:382-391.

二级参考文献63

共引文献55

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部