期刊文献+

耦合板在任意弹性边界条件下的自由振动分析 被引量:3

Free vibration analysis of coupled rectangular plates with general elastic boundary conditions
下载PDF
导出
摘要 采用改进傅里叶级数的方法对任意弹性边界条件下的耦合板进行自由振动分析,将板的振动位移函数表示为标准的二维傅里叶余弦级数和辅助级数的线性组合。通过辅助级数的引入,解决了位移导数在边界不连续的问题。边界条件和耦合条件通过均匀布置的线性位移弹簧和旋转弹簧来模拟,通过改变弹簧刚度值可以实现任意边界条件和耦合条件的模拟。利用Hamilton原理建立求解方程,建立一个线性方程组,最终得到耦合板的控制方程的矩阵表达式,通过特征值分解可以求得固有频率。通过数值仿真分析计算并与有限元结果比较,验证该方法的准确性。 An improve Fourier series method was employed to analyze the free vibration of coupled plates with general elastic boundary conditions. Their vibration displacements were expressed as the linear combination of a double Fourier cosine series and auxiliary series functions. These supplementary functions were used to solve the discontinuity problems of displacement partial differentials along edges. Boundary conditions and coupled conditions were physically realized with the uniform distributions of springs along each boundary edge. Different boundary conditions and coupled conditions were directly obtained by changing the stiffnesses of springs. Then, Hamilton's principle was used to build a matrix eigenvalue equation equivalent to the governing differential equations of a coupled plate, and all the eigenvalues were obtained by solving the matrix equation. Finally, the comparison between the numerical results and those obtained with FEM was presented to validate the correctness of the proposed method.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第22期178-182,188,共6页 Journal of Vibration and Shock
基金 国家自然科学基金项目(51105087) 中央高校基本科研业务费专项资金资助(HEUCF110701)
关键词 耦合板 自由振动 改进的傅里叶级数 任意弹性边界 HAMILTON原理 coupled plates free vibration improved Fourier series general elastic boundary comditions Hamilton's principle
  • 相关文献

参考文献16

  • 1Guyader J L,Boisson C,Lesueur C.Energy transmission in finite coupled plates,part Ⅰ:theory[J].Journal of Sound and Vibration,1982,81:81-92.
  • 2Cremer L,Heckl M,Ungar E E.Structure-borne sound[M].Peeersson,Springer,1988.
  • 3Cuschieri J M.Structural power-flow analysis using a mobility approach of an L-shaped plate[J].Journal of the Acoustical Society of America,1990,87(3):1159-1165.
  • 4Kim H S,Kang H J,Kim J S.Transmission of bending waves in inter-connected rectangular plates[J].Journal of the Acoustical Society of America,1994,96 (3):1557-1562.
  • 5Shen Y,Gibbs B M.An approximate solution for the bending vibrations of a combination of rectangular thin plates[J].Journal of Sound and Vibration,1996,105:73-90.
  • 6Ouisse M,Guyader J L.Vibration sensitive behavior of a connecting angle:Case of coupled beams and plates[J].Journal of Sound and Vibration,2003,267 (4):809-850.
  • 7Kessissoglou N J.Active attenuation of the wave transmission through an L-shape junction[J].Journal of the Acoustical Society of America,2001,110(1):267-277.
  • 8Cuschieri J M,McCollum M D.In-plane and out-of-plane waves power transmission through L-plate junction using the mobility power flow approach[J].Journal of the Acoustical Society of America,1996,100 (2):857-870.
  • 9Farag N H,Pan J.On the free and forced vibration of single and coupled rectangular plates[J].Journal of the Acoustical Society of America,1998,104(1):204-216.
  • 10Wang Z H,Xing J T,Price W G.An investigation of power flow characteristics of L-shaped plates adopting a substructure approach[J].Journal of Sound and Vibration,2002,250(4):627-648.

同被引文献27

  • 1游进 李鸿光 孟光.耦合板结构随机能量有限元分析.振动与冲击,2009,28(11):43-46.
  • 2Lin Tian-ran, Tan A C C, Yan Cheng, et al. Vibration of L- shaped plates under a deterministic force or moment excitation: a case of statistical energy analysis application [J]. Journal of Sound and Vibration, 2011, 330:4780 - 4797.
  • 3Li Xian-hui. A scaling approach for high-frequency vibration analysis of line-coupled plates [ J ]. Journal of Sound and Vibration, 2013, 332 : 4054 - 4058.
  • 4Cuschieri J M, McCollum M D. In-plane and out-of-plane waves' power transmission through an L-plate junction using the mobility power flow approach [ J ]. Journal of the Acoustical Society of America, 1996, 100(2):857-870.
  • 5Du Jing-tao,Li W L, Liu Zhi-gang, et al. Free vibration of two elastically coupled rectangular plates with uniform elastic boundary restraints [ J ]. Journal of Sound and Vibration, 2011, 330 : 788 - 804.
  • 6Chen Yue-hua, Jin Guo-yong, Zhu Ming-gang, et al. Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure [ J ]. Journal of Sound and Vibration, 2012, 331 : 849 - 867.
  • 7Song Zhi-guang, Li Feng-ming. Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow [ J ]. International Journal of Mechanical Sciences. 2014, 81:65-72.
  • 8Johansson C, Pacoste C, Karoumi R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by eoncentrated moving loads [ J ]. Computers and Structures. 2013, 119:85 -94.
  • 9Eftekhari S A, Jafari A A. High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions [ J ]. Applied Mathematics and Computation, 2012. 219 : 1312 - 1344.
  • 10Li W L, ZHANG Xue-feng, DU Jing-tao, et al. An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports [ J ]. Journal of Sound and Vibration, 2009, 321:254-269.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部