期刊文献+

A high order energy preserving scheme for the strongly coupled nonlinear Schr¨odinger system 被引量:3

A high order energy preserving scheme for the strongly coupled nonlinear Schr¨odinger system
原文传递
导出
摘要 A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly. A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期36-40,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant No.11161017) the National Science Foundation of Hainan Province,China(Grant No.113001)
关键词 average vector field method strongly coupled nonlinear Schrōdinger system energy preservingscheme average vector field method, strongly coupled nonlinear Schrōdinger system, energy preservingscheme
  • 相关文献

参考文献19

  • 1Gross E 1963 J. Math. Phys. 4 195.
  • 2Wadati M, Izuka T and Hisakado M 1992 J. Phys. Soc. Jpn. 61 2241.
  • 3Zakharov V E and Schulman E I 1982 Physica D 4 270.
  • 4Aydin A and Karas?zen B 2007 Comput. Phys. Commun. 177 566.
  • 5Zhang R P, Yu X J and Feng T 2012 Chin. Phys. B 21 030202.
  • 6Cai J X 2010 Appl. Math. Comput. 216 2417.
  • 7Qian X, Chen Y M, Gao E and Song S H 2012 Chin. Phys. B 21 120202.
  • 8Cai J X and Wang Y S 2013 Chin. Phys. B 22 060207.
  • 9Feng K and Qin M Z 2010 Symplectic Geometric Algorithms for Hamiltonian Systems (Heidelberg: Springer and Zhejiang Science and Technology Publishing House).
  • 10Qin M Z and Wang Y S 2011 Structure-Perseving Algorithms for Partial Differential Equation (Hangzhou: Zhejiang Science and Technology Publishing House) (in Chinese).

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部