摘要
The ionization and ionic dissociation of the superexcited state of N20 are studied by using electron energy loss spectroscopy and positive ion time-of-flight mass spectroscopy at different momentum transfers; that is, 0 and 0.23 a.u. (atomic unit) . The transitions at 13.8 eV and 14.0 eV are reassigned as 3pπ(000) and 3pσ(000) converging to A^2∑+, respectively. The competition between the main decay pathways of superexcited states at different momentum transfers is revealed. It is found that 3dσ converging to C^2∑+ mainly decays into N2O^+ while 4dσ can decay into both N2^O+ and NO^+.
The ionization and ionic dissociation of the superexcited state of N20 are studied by using electron energy loss spectroscopy and positive ion time-of-flight mass spectroscopy at different momentum transfers; that is, 0 and 0.23 a.u. (atomic unit) . The transitions at 13.8 eV and 14.0 eV are reassigned as 3pπ(000) and 3pσ(000) converging to A^2∑+, respectively. The competition between the main decay pathways of superexcited states at different momentum transfers is revealed. It is found that 3dσ converging to C^2∑+ mainly decays into N2O^+ while 4dσ can decay into both N2^O+ and NO^+.
基金
Project supported by the National Natural Science Foundation of China(Grants Nos.U1332204,11274291,and 11074299)
the National Basic Research Program of China(Grant No.2010CB923301)
the Specialized Research Fund for the Doctoral Program of Higher Education of China
the Fundamental Research Funds for the Central Universities of Ministry of Education of China