期刊文献+

基于改进SURF算法的交通视频车辆检索方法研究 被引量:27

The Vehicle Retrieval Methods of Traffic Video Based on Improved SURF Algorithm
下载PDF
导出
摘要 针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。 To overcome the problem low accuracy and discrimination of traditional vehicle retrieval methods, a new vehicle video retrieval method based on improved SURF algorithm is proposed. On the basis of vehicle video key frame extraction, the improved SURF algorithm is used for extracting and matching of vehicle image features, inclu- ding improved FAST angular point algorithm to extract the image feature points, including SURF algorithm to extract the image feature vector and including nearest neighbor query algorithm to get matching points; through cal- culating and comparing vehicle images to be retrieved and the database of vehicle images in similarity, image filte- ring is completed and the retrieval results are output. The experimental results and their analysis show preliminarily that this method not only can detect the video vehicle, but also can feedback retrieval results fairly accurately.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第2期297-302,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61201321) 西北工业大学研究生创业种子基金(Z2014153)资助
关键词 车辆视频检索 改进SURF算法 改进FAST特征点 特征点匹配 相似度 algorithms, automobiles, calculations, computer programming languages, experiments, feature extrac-tion, flowcharting, image matching, image retrieval improved SURF(Speeded Up Robust Features)algorithm, improved FAST key points, key points matching, similarity, vehicle retrieval
  • 相关文献

参考文献7

二级参考文献40

共引文献104

同被引文献152

  • 1刘凯,李浥东,林伟鹏.车辆再识别技术综述[J].智能科学与技术学报,2020(1):10-25. 被引量:17
  • 2陈雪松,陈秀芳,毕波,唐锦萍.基于改进SURF的图像匹配算法[J].计算机系统应用,2020,29(12):222-227. 被引量:13
  • 3陈玲,沈红标,李咸伟,刘其真.改进的图像纹理检索方法在矿石识别中的应用[J].中国图象图形学报,2006,11(11):1700-1703. 被引量:12
  • 4Irnbush S. Joshi A. StreetSmart traffic: discovering and dis- seminating automobile congestion using VANET' s[C]// Vehi- cular Technology Conference(VTC200?). Dublin, 2007 : 11-15.
  • 5Marfia G,Roccetti M. Vehicular congestion detection and short- term forecasting: a new model with results[J]. IEEE Transac- tions on Vehicular Technology, 2011. 60(7) : 2936-2948.
  • 6Mandal K,Sen A,Chakraborty A, et al. Road traffic congestion monitoring and measurement using active RFID and GSM tech- nology[C]//lnt. IEEE Conf. Intelligent Transportation Systems (ITS). Washington DC,2011 : 1375-1379.
  • 7Leontiadis I,Marfia G,Mack D,et al. On the effectiveness of an opportunistic traffic management system for vehicular networks [J]. IEEE Transactions on Intelligent Transportation Systems, 2011,12(4) : 1537-1548.
  • 8Shen Wei, Wynter L. A New One-level Convex Optimization Approach for Estimating Origin-destination Demand [J'. Trans- portation Research Part B: Methodological, 2012,46 (10) : 1535- 1555.
  • 9Sun Hui-jun,Zhang Hui,Wu Jian-jun. Correlated scale-free net- work with community: modeling and transportation dynamics [J]. Nonlinear Dynamics, 2012,69 (4) : 2097-2104.
  • 10Shea C, Hassanabadi B, Valaee S. Mobility-based cluster-ing in VANETs using affinity propagation[C]//. GLOBE-COM 2009, Global Telecommunications Conference, Hono-lulu, HI, 2009: 1-6.

引证文献27

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部