期刊文献+

18β-甘草次酸对KCl和苯肾上腺素诱导的大鼠离体肾脏叶间动脉收缩的抑制作用 被引量:7

Inhibitory effect of 18β-glycyrrhetinic acid on KCl- and PE-induced constriction of rat renal interlobar artery in vitro
原文传递
导出
摘要 本文旨在观察18β-甘草次酸(18β-glycyrrhetintic acid,18β-GA)对KCl和苯肾上腺素(phenylephrine,PE)诱导的离体大鼠肾脏叶间动脉(renal interlobar artery,RIA)收缩的影响。急性分离大鼠RIA,应用压力肌动图技术,观察18β-GA预处理后大鼠RIA对内皮非依赖血管收缩剂KCl和PE的反应情况。用微动脉段标本的全细胞膜片钳技术,观察100μmol/L 18β-GA对血管段上平滑肌细胞的膜电容(Cinput)、膜电导(Ginput)和膜电阻(Rinput)的影响。结果显示,KCl(30~100 mmol/L)和PE(0.1~30μmol/L)均可以引起大鼠RIA浓度依赖的收缩;100μmol/L的18β-GA预处理后,KCl和PE对大鼠RIA的缩血管作用明显降低(P<0.01)。给予100μmol/L 18β-GA后,RIA血管段上平滑肌细胞的Rinput、Ginput和Cinput与单个平滑肌细胞数值十分接近。以上结果提示,18β-GA可抑制KCl和PE对大鼠RIA的收缩作用,其机制可能涉及18β-GA对缝隙连接的抑制。 The aim of the present study is to investigate the effect of 1813-glycyrrhetinic acid (18β-GA) on KC1- and PE-induced con- striction of rat renal interlobar artery (RIA). Pressure myograph system was used to observe the constriction induced by KC1 and PE (endothelial independent vasoconstrictor) in acutely separated RIA of Wistar rats with or without 18β-GA pretreatment. Whole-cell patch clamp recordings were used to observe the effect of 1813-GA on membrane input capacitance (Ci,put), membrane input conduct- ance (Ginput) or membrane input resistance (Rinput) of smooth muscle cells embedded in arteriole segment. The results showed that both KC1 (30-100 mmol/L) and PE (0.1-30 μmol/L) induced contraction of RIA in a concentration-dependent way. After pretreatment with 1813-GA (100 μmol/L), KC1- or PE-induced constriction of RIA was significantly decreased. After application of 1813-GA (100 gmol/L), the Cinput, Ginput and Rinput of the in situ smooth muscle cells were very close to those of dispersed single smooth muscle cells. These results suggest 18β-GA inhibits the contraction induced by KC1 and PE, and the underlying mechanism may involve the inhibitory effect of 18β-GA on gap junction.
出处 《生理学报》 CAS CSCD 北大核心 2014年第2期195-202,共8页 Acta Physiologica Sinica
基金 supported by National Basic Research Development Program of China(No.2012CB26611) the National Natural Science Foundation of China(No.31260247) the Science and Technology Research Project of Xinjiang Production and Construction Corps China(No.2012BA021 2010GG34)
关键词 缝隙连接 肾脏叶间动脉 18Β-甘草次酸 压力肌动图技术 gap junction renal interlobar artery 18β-glycyrrhetinic acid pressure myograph system
  • 相关文献

参考文献23

  • 1Ma KT,Guan BC,Yang YQ,Nuttall AL,Jiang ZG.2-Amin-oethoxydiphenyl borate blocks electrical coupling and inhib-its voltage-gated K+ channels in guinea pig arteriole cells.Am J Physiol Heart Circ Physiol 2011; 300:H335-H346.
  • 2明佳,刘良明.缝隙连接及其与血管舒缩功能调节的关系[J].国际病理科学与临床杂志,2008,28(5):436-442. 被引量:1
  • 3付勇南,王梦洪.缝隙连接与血管功能调节的研究进展[J].江西医药,2007,42(8):755-758. 被引量:1
  • 4Hanner F,Sorensen CM,Holstein-Rathlou NH,Peti-PeterdiJ.Connexins and the kidney.Am J Physiol Regul IntegrComp Physiol 2010; 298:R1143-R1155.
  • 5高雪岩,王文全,魏胜利,李卫东.甘草及其活性成分的药理活性研究进展[J].中国中药杂志,2009,34(21):2695-2700. 被引量:290
  • 6Matchkov W,Rahman A,Peng H,Nilsson H,Aalkjaer C.Junctional and nonjunctional effects of heptanol and glycyr-rhetinic acid derivates in rat mesenteric small arteries.Br JPharmacol 2004; 142(6):961-972.
  • 7Matchkov W,Rahman A,Bakker LM,Griffith TM,NilssonH,Aalkjaer C.Analysis of effects of connexin-mimetic pep-tides in rat mesenteric small arteries.Am J Physiol HeartCirc Physiol 2006; 291(1):H357-H367.
  • 8李新芝,司军强,李丽,刘政江,赵磊,马克涛.18β-甘草次酸对豚鼠微动脉平滑肌细胞间缝隙连接的抑制作用[J].吉林大学学报(医学版),2011,37(3):413-417. 被引量:2
  • 9Guan BC,Si JQ,Jiang ZG.Blockade of gap junction cou-pling by glycyrrhetinic acids in guinea pig cochlear artery:awhole-cell voltage-and current-clamp study.Br J Pharmacol2007; 151(7):1049-1060.
  • 10Yamamoto Y,Fukuta H,Nakahira Y,Suzuki H.Blockade by18beta-glycyrrhetinic acid of intercellular electrical couplingin guinea-pig arterioles.J Physiol 1998; 511(Pt 2):501-508.

二级参考文献127

  • 1明佳,刘良明,李涛,杨光明,徐竞.肌内皮缝隙连接对失血性休克大鼠血管舒张反应的影响[J].创伤外科杂志,2006,8(2):120-123. 被引量:8
  • 2明佳,刘良明,李涛,杨光明,徐竞.肌内皮缝隙连接对失血性休克大鼠血管收缩反应的影响[J].中国危重病急救医学,2006,18(9):519-522. 被引量:9
  • 3Cor de Wit. Connexins pave the way for vascular communication [ J ]. News Physiol Sci,2004,19 ( 3 ) : 148-153.
  • 4Alonso PM. Connexin phosphorylation as a regulatory event linked to channel gating[ J]. Biochim Biophys Acta, 2005,1711 ( 2 ) : 164-171.
  • 5Parthasarathi K, Iehimura H, Monma E, et al. Connexin 43 mediates spread of Ca^2+ dependent proinflammatory responses in lung capillaries[J]. J Clin Invest, 2006, 116(8) :2193-2200.
  • 6Goldberg GS, Moreno AP, Lampe PD. Gap junctions between cells expressing connexin43 or 32 show inverse perselectivity to adenosine and ATP[ J]. J Biol Chem, 2002, 277(39) :36725-36730.
  • 7Simon AM, McWhorter AR. Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40 [J]. Dev Biol, 2002, 251 (2) :206-220.
  • 8Simon AM, McWhorter AR. Decreased intercellular dye-transfer and downregulation of non-ablated connexins in aortic endothelium deficient in connexin 37 or connexin 40 [ J ]. J Cell Sci,2003,116 (Pt 11 ) :2223-2236.
  • 9Fallon RF, Goodenough DA. Five-hour half-life of mouse liver gapjunction protein[ J]. J Cell Biol, 1981,90(20) :521-526.
  • 10Beardslee MA,Laing JG,Beyer EC, et al. Rapid turnover of connexin43 in the adult rat heart [ J ]. Circ Res, 1998,83 (6) : 629- 635.

共引文献330

同被引文献156

引证文献7

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部