期刊文献+

Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring ofK4 V Kn 被引量:1

Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring ofK4 ∨ Kn
下载PDF
导出
摘要 Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第1期76-87,共12页 数学季刊(英文版)
基金 Supported by NNSF of China(61163037,61163054,61363060)
关键词 complete graphs join of graphs Smarandachely adjacent-vertex-distinguishing proper edge coloring Smarandachely adjacent-vertex-distinguishing proper edge chromatic number complete graphs join of graphs Smarandachely adjacent-vertex-distinguishingproper edge coloring Smarandachely adjacent-vertex-distinguishing proper edge chromaticnumber
  • 相关文献

参考文献7

  • 1BALISTER N, GYORI E, LEHEL J, et al. Adjacent vertex distinguishing edge-colorings[J]. SIAM Journal on Discrete Mathematics, 2007, 21(1): 237-250.
  • 2BONDY J A, MURTY U S R. Graph Theory[M]. London: Springer, 2008.
  • 3EDWARDS K, HORNAAK M, WOZNIAK M. On the neighbour-distinguishing index of a graph[J], Graphs and Combinatorics, 2006, 22: 341-350.
  • 4ZHANG Zhong-fu, LIU Lin-zhong, WANG Jian-fang. Adjacent strong edge colorings of graphs[J]. Applied Mathematics Letters, 2002, 15(5): 623-626.
  • 5ZHU En-qiang, WANG Zhi-wen, ZHANG Zhong-fu. On the Smarandachely-adjacenet-vertex edge coloring of some double graphs[J]. Journal of Shandong University(Natural Science), 2009, 44(12): 25-29.
  • 6XIN Xiao-qing,CHEN Xiang-en,WANG Zhi-wen.Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs[J].Chinese Quarterly Journal of Mathematics,2012,27(1):92-97. 被引量:5
  • 7CHEN Xiang-en MA Yan-rong.Vertex-distinguishing Total Colorings of 2Cn[J].Chinese Quarterly Journal of Mathematics,2013,28(3):323-330. 被引量:6

二级参考文献20

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2BALISTER P N,BOLLOB S B,SHELP R H. Vertex distinguishing colorings of graphs with (G) = 2[J]. Discrete Mathematics,2002,252(1-3): 17-29.
  • 3BALISTER P N,RIORDAN O M,SCHELP R Hao. Vertex distinguishing edge colorings of graphs[J]. J Graph Theory,2003,42: 95-109.
  • 4BAZGAN C,HARKAT-Benhamdine A,LI Hao,et al. On the vertex-distinguishing proper edge-colorings of graphs[J]. J Combin Theory,1999,75(B): 288-301.
  • 5BURRIS A C,SCHELP R H. Vertex-distinguishing proper edge-colorings[J]. J of Graph Theory,1997,26(2): 73-82.
  • 6CHEN Xiang-en. Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube[J]. Journal of Northwest Normal University(Natural Science),2005,41(5): 1-3.
  • 7CHEN Xiang-en,XIN Xiao-qing. Vertex-distinguishing VE-total coloring of wheels,fans and complete bipartite graphs K 1,n and K 2,n [J]. Journal of Northwest Normal University(Natural Science),2009,45(6): 1-8.
  • 8CHEN Xiang-en,ZU Yue,XU Jin,et al. Vertex-distinguishing E-total coloring of graphs[J]. The Arabian Journal for Science and Engineering-Mathematics,to appear.
  • 9HORNK M,SOT K R. Observability of complete multipartite graphs with equipotent parts[J]. Ars Com- binatoria,1995,41: 289-301.
  • 10HORNK M,SOT K R. Asymptotic behavior of the observability of Q n [J]. Discrete Mathematics,1997, 176: 139-148.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部