Local Regularity for a 1D Compressible Viscous Micropolar Fluid Model with Non-homogeneous Temperature Boundary
Local Regularity for a 1D Compressible Viscous Micropolar Fluid Model with Non-homogeneous Temperature Boundary
摘要
In this paper,we discuss the local existence of H^i(i=2,4)solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary.The proof is based on the local existence of solutions in[1].
In this paper, we discuss the local existence of Hi(i = 2, 4) solutions for a 1D compressible viscous micropolar fluid model with non-homogeneous temperature boundary. The proof is based on the local existence of solutions in [1].
基金
Supported by the NNSF of China(11271066)
Supported by the grant of Shanghai Education Commission(13ZZ048)
参考文献25
-
1MUJAKOVIC N. 1D compressible viscous micropolar fluid model with non-homogeneous boundary condi- tions for temperature a local existence theorem[J]. Nonlinear Analysis: Real world Applications, 2012, 13: 1844-1853.
-
2KANEL Y I. Cauchy problem for the equations of gasdynamics with viscocity[J]. Siberian Math J, 1979, 20: 208-218.
-
3OKADA M, KAWASHIMA S. On the equations of one-dimensional motion of compressible viscous fluids[J]. J Math Kyoto Univ, 1983, 23: 55-71.
-
4QIN Yu-ming, WU Yu-mei, LIU Fa-gui. On the Cauchy problem for a one-dimensional compressible viscous polytropic gas[J]. Portugaliae Mathematica, 2007, 64: 87-126.
-
5ANTONTSEV S N, KAZHIKHOV A V, MONAKHOV V N. Boundary value problems in mechanics of nonhomogeneous fluids[M]. North Holland: Amsterdam, 1990.
-
6CHEN Gui-qing. Global solutions to the compressible Navier-Stokes equations for a reacting mixture[J] SIAM J Math Anal, 1992, 23: 609-634.
-
7CHEN Gui-qing, HOFF D, TRIVISA K. Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data[J]. Comm PDE, 2000, 25: 2233-2257.
-
8DAFERMOS C M. Global smooth solutions to the initial boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity[J]. SIAM J Math Anal, 1982, 13: 397-408.
-
9DAFERMOS C M, HSIAO L. Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity[J]. Nonlinear Anal, TMA, 1982, 6: 435-454.
-
10DUCOMET B, ZLOTNIK A. Lyapunov functional method for 1D radiative and reactive viscous gas dy- namics[J]. Arch Rat Mech Anal , 2005, 177: 185-229.
-
1高红亚,田会英.LOCAL REGULARITY RESULT FOR SOLUTIONS OF OBSTACLE PROBLEMS[J].Acta Mathematica Scientia,2004,24(1):71-74. 被引量:20
-
2高红亚,郭静,左亚丽,褚玉明.LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS[J].Acta Mathematica Scientia,2010,30(1):208-214. 被引量:1
-
3李松.Vector subdivision schemes in (L_p(R^5))~r(1≤p≤∞) spaces[J].Science China Mathematics,2003,46(3):364-375. 被引量:3