期刊文献+

HENIG GLOBALLY EFFICIENCY FOR SET-VALUED OPTIMIZATION AND VECTOR VARIATIONAL INEQUALITY 被引量:6

HENIG GLOBALLY EFFICIENCY FOR SET-VALUED OPTIMIZATION AND VECTOR VARIATIONAL INEQUALITY
原文传递
导出
摘要 This paper deals with Henig globally efficiency in vector optimization involving generalized cone-preinvex set-valued mapping. Some properties of generalized cone-preinvex set-valued map are derived. It also disclose the closed relationships between Henig globally efficiency of generalized conepreinvex set-valued optimization problem and Henig globally efficiency of a kind of vector variational inequality.
作者 YU Guolin
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第2期338-349,共12页 系统科学与复杂性学报(英文版)
基金 supported by the Natural Science Foundation of China under Grant No.11361001 Ministry of Education Science and technology key projects under Grant No.212204 the Natural Science Foundation of Ningxia under Grant No.NZ12207 the Science and Technology key project of Ningxia institutions of higher learning under Grant No.NGY2012092
关键词 Contingent epiderivative generalized cone-preinvex set-valued mapping Henig globallyefficiency set-valued optimization vector variational inequality. 向量变分不等式 集值优化 向量最优化问题 凸集值映射 广义锥 不变凸
  • 相关文献

参考文献3

二级参考文献15

  • 1徐义红,刘三阳.SUPER EFFICIENCY IN THE NEARLY CONE-SUBCONVEXLIKE VECTOR OPTIMIZATION WITH SET-VALUED FUNCTIONS[J].Acta Mathematica Scientia,2005,25(1):152-160. 被引量:14
  • 2时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 3Aubin J P. Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. In: Nachbin Led. Mathematical Analysis and Applications. Part A. New York: Academic Press, 1981. 160-229.
  • 4Bhatia D, Mehra A. Lagrangian duality for preinvex set-valued functions. Journal of Mathematical Analysis and Applications, 1997, 214:599-612.
  • 5Chen G Y, Jahn J. Optimality conditions for set-valued optimization problems. Mathematical Methods of Operation Research, 1998, 48:187-200.
  • 6Corley H W. Optimality conditions for maximizations of set-valued functions. Journal of Optimization Theory and Applications, 1988, 58:1-10.
  • 7Jahn J, Rauh R. Contingent epiderivatives and set-valued optimization. Mathematical Methods of Operation Research, 1997, 46:193-211.
  • 8Luc D T. Theory of vector optimization. Berlin: Springer, 1989.
  • 9Luc D T. Contingent derivatives of set-valued maps and applications to vector optimization. Mathematical Programming, 1991, 50:99-111.
  • 10李仲飞.集值映射向量优化的Benson真有效性[J].应用数学学报,1998,21(1):123-124. 被引量:48

共引文献20

同被引文献24

  • 1FU Wantao (Department of Mathematics, Nanchang University, Nanchang 330047, China)CHENG Yonghong (Institute of Systems Science, Acadetnia Sinica, Beijing 100080, China).ON THE STRICT EFFICIENCY IN A LOCALLYCONVEX SPACE[J].Systems Science and Mathematical Sciences,1999,12(1):40-44. 被引量:19
  • 2徐义红.集值优化问题强有效解的Kuhn Tucker最优性条件[J].Journal of Mathematical Research and Exposition,2006,26(2):354-360. 被引量:9
  • 3盛宝怀,刘三阳.KUHN-TUCKER CONDITION AND WOLFE DUALITY OF PREINVEX SET-VALUED OPTIMIZATION[J].Applied Mathematics and Mechanics(English Edition),2006,27(12):1655-1664. 被引量:2
  • 4丘京辉.CONE-DIRECTED CONTINGENT DERIVATIVES AND GENERALIZED PREINVEX SET-VALUED OPTIMIZATION[J].Acta Mathematica Scientia,2007,27(1):211-218. 被引量:10
  • 5JahnJ, Rauh R. Contingent epiderivatives and set-valued optimzation[J]. Mathematical Methods of Operation Research, 1997, 46: 193-211.
  • 6GONG X H. Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior[J].Journal of Mathematical Analysis and Applications, 2005, 307: 12 - 31.
  • 7JahnJ, Rauh R. The existence of contingent epiderivatives for set-valued mapping[J]. Applied Mathematics Letters., 2003, 16(8): 1179-1185.
  • 8Jimenez B, Novo V, Sarna M. Scalarization and optimality conditions for strict minimizers in multiobjective optimization via contingent epiderivatives[J].Journal of Mathematical Analysis and Applications, 2009, 352(2): 788-798.
  • 9Rodriguez-Marina L, Sama M. About contingent epiderivatives[J].Journal of Mathematical Analysis and Applications, 2007, 327(2): 754-762.
  • 10Rodriguez-Marina L, Sarna M. Variational characterization of the contingent epiderivative[J].Journal of Mathematical Analysis and Applications, 2007, 335(2): 1374 - 1382.

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部