摘要
The thrust generation by electro-hydrodynamic (EHD) effect has been studied for a wire-cylinder arrangement under high DC voltage. Series of measurements have been conducted in order to determine the relationship between generated thrust and corona discharge current, as well as its dependence on geometrical characteristics of the electrodes, e.g. electrode gap, wire and cylinder radii. The experimental investigation has shown a linear relationship between the generated thrust and the discharge current, while parametric analysis showed that increased electrode gap and emitter radius reduces the thrust. On the other hand, large gaps favor the thrust per unit power ratio.
The thrust generation by electro-hydrodynamic (EHD) effect has been studied for a wire-cylinder arrangement under high DC voltage. Series of measurements have been conducted in order to determine the relationship between generated thrust and corona discharge current, as well as its dependence on geometrical characteristics of the electrodes, e.g. electrode gap, wire and cylinder radii. The experimental investigation has shown a linear relationship between the generated thrust and the discharge current, while parametric analysis showed that increased electrode gap and emitter radius reduces the thrust. On the other hand, large gaps favor the thrust per unit power ratio.