期刊文献+

基于运动区域信息熵的实用智能安全监控

Method of Intelligent Safety Surveillance Based on Information Entropy of Motion Region
下载PDF
导出
摘要 针对传统网络监控系统需要时刻有人值守的缺点,采用数字图像处理技术和无线移动通信技术,设计了一种智能安全监控系统;文章提出了采用运动物体识别和运动区域信息熵计算相结合的算法找到最佳信息帧,以此作为通知用户的手段;结合JPEG2000的ROI技术完成了算法融合,实现了最佳信息帧提取和视频压缩;同时,对硬件结构进行了设计,采用了被动人体红外检测触发电路和DSP+FPGA的高效处理结构;最后,通过仿真证明了运动区域信息熵的效用,即信息熵最大帧代表这一帧图像在视频中的信息。 Aim at the defect of traditional web surveillance system which need people to guard all the time, adopt the technique of digital graphic processing and wireless mobile communication to design a kind of intelligence safety surveillance system. The paper proposed adopt the technique of moving target detection, morphological filter, maximum border detection and information entropy calculation to find the opti- mum frame, and use the frame to notify the subscriber. Combine with the ROI technique of JPEG2000 to complete algorithm fusion, achieve optimum frame pick--up and video compression. At the same time, design the hardware structure, adopt the detectiing circuit of passive body infrared ray and DSP+ FPGA efficiency process structure. In the end, demonstrate the avail of moving region information entropy through simulation, maximum entropy represents the information in the video.
出处 《计算机测量与控制》 北大核心 2014年第4期1093-1095,共3页 Computer Measurement &Control
关键词 运动物体检测 信息熵 DSP JPEG2000 ROI moving object detection information entropy DSP JPEG2000 ROI
  • 相关文献

参考文献2

二级参考文献23

  • 1朴现磊,熊继军,沈三民.基于FPGA的高速数据采集系统的设计[J].微计算机信息,2008,24(2):209-211. 被引量:31
  • 2吴建军,姬劳,谢拴勤.基于FPGA的智能化I/O接口在飞机测控系统中的应用[J].计算机测量与控制,2005,13(7):668-670. 被引量:3
  • 3Nakib A, Oulhadj H, Siarry P. Image Histogram Thresholding Based on Multiobjective Optimization. Signal Processing, 2007, 87 (11) : 2516 -2534.
  • 4Ng H F. Automatic Thresholding for Defect Detection. Pattern Recognition Letters, 2006, 27(14) : 1644 - 1649.
  • 5Pun T. Entropic Thresholding: A New Approach. Computer Vision, Graphics and Image Processing, 1981, 16(3) : 210 - 239.
  • 6Kapur N, Sahoo P K, Wong A K C. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics and Image Processing, 1985, 29(3) : 273 -285.
  • 7Sahoo P K, Slaaf D W, Albert T A. Threshold Selection Using a Minimal Histogram Entropy Difference. Optical Engineering, 1997, 56(7) : 1976 -1981.
  • 8Sahoo P, Wilkins C, Yeager J. Threshold Selection Using Renyi's Entropy. Pattern Recognition, 1997, 30( 1 ) : 71 -84.
  • 9de Albuquerque M P, Esquef I A, Mello A R G. Image Thresholding Using Tsallis Entropy. Pattern Recognition Letters, 2004, 25 (9) : 1059 - 1065.
  • 10Wang Shitong, Chung F L. Note on the Equivalence Relationship between Renyi-Entropy Based and Tsallis-Entropy Based Image Thrcsholding. Pattern Recognition Letters, 2005, 26 (14) : 2309 - 2312.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部