期刊文献+

PSO优化GRNN在显示卡超频仿真测试中的应用 被引量:1

Application of Optimized GRNN in Simulation Test of Graphics Card's Overclocking
下载PDF
导出
摘要 为了开发显示卡超频仿真软件,提出了一种估计超频结果测试值的算法;首先根据显示卡的主要性能指标确定了超频的设置参数、主要结果及其测试方法,然后以设置参数为输入、结果测试值为输出,构建了一个广义回归神经网络;采用交叉验证方法计算网络的拟合误差,并以此为指标函数,引入粒子群优化算法对网络参数进行了优化,从而提高了网络的拟合精度;经采集MSI R6850显示卡的25个超频样本实测,该算法使拟合误差降低了60%,其有效性得到了验证。 To develop the simulation software of graphics card' s overclocking, an algorithm to estimate the test value of overclocking result is presented. First, the overcloeking' s set parameters, main results and its test method is determined according to the main perform- ance index of graphics card. Then a general regression neural network is constructed with settings parameters and result value as input and output. The paper uses cross--validation to calculate the network' s fitting error and acting it as the index function. It optimizes the network parameters by introducing particle swarm optimization algorithm. So it improves the estimation accuracy of the network. Testing by collecting 25 overclocking samples of MSI R6850 graphics card, the algorithm reduces the fitting error by 60%, and its validity is verified.
作者 胡振
出处 《计算机测量与控制》 北大核心 2014年第4期1263-1266,共4页 Computer Measurement &Control
关键词 粒子群优化算法 广义回归神经网络 显示卡超频 结果测试 particle swarm optimization algorithm general regression neural network graphics card s overclocking result test
  • 相关文献

参考文献3

二级参考文献42

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 3高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 4潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 5王丰效.GM(1,1)组合预测模型及其应用[J].统计与决策,2006,22(21):142-143. 被引量:11
  • 6Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc of the IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 7Shi Yuhui,Eberhart R C.A modified particle swarm optimizer[C].Proc of the IEEE International Conference on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1998:69-73.
  • 8Chatterjee A,Siarry ENonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J].Computers and Operations Research,2006,33(3):859-871.
  • 9Zhan Z H,Zhang J.Adaptive particle swarm optimization[C].The Sixth International Conference on Ant Colony Optimization and Swarm Intelligence,2008:227-234.
  • 10Suganthan P N.Particle swarm optimizer with neighborhood operator[C].Proc of the Congress on Evolutionary Computation.Piscataway,NJ:IEEE Service Center,1999:1958-1962.

共引文献100

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部