期刊文献+

Microstructure and mechanical properties of Mg-Si alloys processed by cyclic closed-die forging 被引量:2

循环闭式模锻制备Mg-Si合金的组织和力学性能(英文)
下载PDF
导出
摘要 Mg-xSi (x=0, 1.5, 3.3) alloys were fabricated and subjected to cyclic closed-die forging (CCDF), a new severe plastic deformation process, at 450 ℃ for 1, 3, and 5 passes. With applying CCDF, tensile strength, elongation and hardness increase, while coarse Mg2Si particles break into smaller pieces and exhibit more uniform distribution. Mg-1.5%Si alloy exhibits a combination of improved strength and elongation after 5 passes of CCDF processing. The tensile strength is about 142 MPa and elongation is about 8%. The improvement in mechanical properties was further characterized by dry sliding wear testing. The results show that wear resistance improves with silicon content and CCDF process passes, particularly the first pass. The wear resistance increases by about 38% for Mg-3.3%Si after 5 passes of CCDF compared with pure Mg. The improvement of wear is related to microstructure refinement and homogenization based on the Archard equation and friction effect. 首先制备Mg-xSi(x=0,1.5,3.3)合金,再采用一种新的大塑性变形方法——循环闭式模锻(CCDF)在450°C进行1、3和5道次加工。通过循环闭式模锻,粗大的Mg2Si颗粒被破碎成小块并且分布更加均匀,材料的拉伸强度、伸长率和硬度得到了提高。经5道次加工后Mg-1.5%Si合金的强度和伸长率同时得到提高,拉伸强度达142 MPa,伸长率为8%。采用干滑动摩擦进一步表征材料性能。结果表明,随着Si含量和加工道次的增加,材料的耐磨性能得到了提高,加工1道次后显著提高,再继续增加道次时提高不明显。经5道次加工后,Mg-3.3%Si合金的耐磨性比纯镁的高38%。根据Archard方程和摩擦效果,耐磨性的提高归结于组织的细化和均匀化。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期66-75,共10页 中国有色金属学报(英文版)
基金 Projects(50674067,51074106)supported by the National Natural Science Foundation of China Project(2011BAE22B01-5)supported by the National Key Technologies R&D Program during the 12th Five-Year Plan Period,China Project(09JC1408200)supported by the Science and Technology Commission of Shanghai Municipality,China
关键词 MG2SI magnesium alloy MG2SI cyclic closed-die forging WEAR MICROSTRUCTURE 镁合金 循环闭式模锻 磨损 组织
  • 相关文献

参考文献29

  • 1MORDIKE B L, EBERT T. Magnesium: Properties-applications- potential [J]. Materials Science and Engineering A, 2001, 302: 37-45.
  • 2LUO A A. Recent magnesium alloy development for automotive powertrain applications [J]. Materials Science Forum, 2003, 419-422 57-66.
  • 3HUANG W, HOU B, PANG Y, ZHOU Z. Fretting wear behavior of AZ91D and AM60B magnesium alloys [J]. Wear, 2006, 260: 1173-1178.
  • 4AN J, LI R G, LU Y, CHEN C M, XU Y, CHEN X, WANG L M. Dry sliding wear behavior of magnesium alloys [J]. Wear, 2008, 265:97-104.
  • 5AUNG N N, ZHOU W, L1M L E N. Wear behaviour of AZ91D alloy at low sliding speeds [J]. Wear, 2008, 265: 780-786.
  • 6SHARMA S C, ANAND B, KRISHNA M. Evaluation of sliding wear behaviour of feldspar particle-reinforced magnesium alloy composites [J]. Wear, 2000, 241: 33-40.
  • 7LIM C Y H, LEO D K, ANG J J S, GUPTA M. Wear of magnesium composites reinforced with nano-sized alumina particulates [J]. Wear, 2005, 259: 620-625.
  • 8NGUYEN Q B, GUPTA M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates [J]. Composites Science and Technology, 2008, 68:2185-2192.
  • 9WANG X J, HU X S, WU K, DENG K K, GAN W M, WANG C Y, ZHENG M Y. Hot deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir casting [J]. Materials Science and Engineering A, 2008, 492: 481-485.
  • 10LU L, LAI M O, HOE M L. Formaton of nanocrystalline Mg2Si and Mg/Si dispersion strengthened Mg-AI alloy by mechanical alloying [J]. Nanostructured Materials, 1998, 10:551-563.

二级参考文献56

  • 1CHANG C I, DU X H, HUANG J C. Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing [J]. Scripta Materialia, 2007, 57: 209-212.
  • 2AVEDESIAN M M, BAKER H. ASM specialty handbook: Magnesium and magnesium alloys [M]. Materials Park, OH: The Materials Information Society, 1999: 13-43.
  • 3MATHIS K, GUBICZA J, NAM N H. Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing [J]. Journal of Alloys and Compounds, 2005, 394: 194-199.
  • 4KOCH C C, MORRIS D G, LU K, INOUE A. Ductility of nanostructured materials [J]. Mater Res Soc Bull, 1999, 24:54 58.
  • 5WEERTMAN J R, FARKAS D, HEMKER K, KUNG H, MAYO M, MITRA R. Structure and mechanical behavior of bulk nanocrystalline materials [J]. Mater Res Soc Bull, 1999, 24: 44-50.
  • 6MCFADDEN S X, MISHAR R S, VALIEV R Z, ZHILYAEV A P, MUKHERJEE A K. Low temperature superplasticity in nanostructured nickel and metal alloys [J]. Nature, 1999, 398: 684- 686.
  • 7WU X, LUO P, WANG J T, LIANG M, XIE S, XIA K. Severe plastic deformation of magnesium alloy AZ31 at low temperatures [J]. Materials Forum, 2005, 29:441-445.
  • 8MIYAHARA Y, MATSUBARA K, HORITA Z, LANGDON T G.Grain refinement and superplasticity in a magnesium alloy processed by equal-channel angular pressing [J]. Metallurgical and Materials Transactions A, 2005, 36:1705-1711.
  • 9MABUCHI M, IWSAKI H. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE [J]. Seripta Matefialia, 1997, 36(6): 681-686.
  • 10MABUCHI M, CHINO Y, IWASAKI H, AIZAWA T, HIGASHI K. The grain size and texture dependence of tensile properties [J]. Mater Trans, 2001, 42: 1182-1189.

共引文献30

同被引文献45

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部