期刊文献+

基于匹配追踪的语音压缩感知观测序列的正弦字典建模 被引量:3

A New Sinusoidal Dictionary Modeling for Compressed Sensing Measurements Based on Matching Pursuit Method
下载PDF
导出
摘要 压缩感知技术是目前信号处理领域的研究热点。文中针对压缩感知技术实际应用于语音领域时压缩率不高的问题做了研究。首先介绍了压缩感知技术的理论,接着提出了适合建模的观测矩阵的选用标准。在行阶梯观测矩阵下,本文提出了观测序列的一种新模型——基于匹配追踪算法的正弦字典模型,该模型采用稀疏分解的方法对观测序列进行建模。仿真结果表明该建模方法有效地进一步压缩了观测序列,而不明显降低恢复语音的质量。 Compressed sensing (CS) has been a hot spot for research in signal processing. But the com- pression rate of speech CS processing is far below the theoretical value, So some researches are done on this problem. Firstly, the basic theory of CS is introduced. Then, the choice criterion of the measurement matrix for measurements modeling is presented. Finally, in the row echelon measurement matrix, a new sinusoidal dictionary model is established based on matching pursuit (MP) technology, the model uses the sparse decomposition method to model the measurements. Simulation results show that the modelling method can effectively reduce the measurement sequences without significant damage to the recovered speech.
作者 严菲 杨震
出处 《南京邮电大学学报(自然科学版)》 北大核心 2014年第2期27-31,共5页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 国家自然科学基金(61271335)资助项目
关键词 压缩感知 行阶梯观测矩阵 观测序列 匹配追踪 正弦字典 建模 compressed sensing(CS) compressed sensing(CS) row echelon measurement matrix measurement sequences matching pursuits sinusoidal dictionary modeling
  • 相关文献

参考文献10

  • 1DONOHO D.Compressed sensing[J].IEEE Trans on Inform Theory,2006,52(4):1289-1306.
  • 2DONOHO D,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86 (3):533-548.
  • 3张健,杨震,季云云.基于神经网络的压缩感知观测序列建模[J].南京邮电大学学报(自然科学版),2012,32(3):40-44. 被引量:2
  • 4叶蕾,杨震,王天荆,孙林慧.行阶梯观测矩阵、对偶仿射尺度内点重构算法下的语音压缩感知[J].电子学报,2012,40(3):429-434. 被引量:22
  • 5BAO Changchun.Research on linear predictive speech coding based on sinusoidal model at low-bit-rates[D].Beijing:Beijing University of Technology,2002.
  • 6MARTIN T N,RADOSLAV V.Audio and speech compression using sinusoidal modeling and wavelet residuum coding[C]// ELMAR 54th International Symposium.2012.
  • 7MCAULAY R J,QUATIERI T F.Speech analysis-synthesis based on a sinusoidal representation[J].IEEE Trans on Acoustics,Speech and Signal Processing,1986,34(4):744-754.
  • 8SMITH J O,SARA X.PARSHL:An analysis/sythesis program for non-harmonic sounds based on a sinusoidal representation[C]// Proceedings of the International Computer Music Conference.1987.
  • 9MALLAT S,ZHANG Zhifeng.Matching pursuits with time-frequency dictionaries[J].IEEE Trans on Signal Processing,1993,45:3397-3415.
  • 10TROPP J,GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2007,53:4655-4666.

二级参考文献26

  • 1D Donoho.Compressed sensing[J].IEEE Trans on InformationTheory,2006,52(4):1289-1306.
  • 2E Candès.Compressive sampling[A].Proceedings of the Inter-national Congress of Mathematicians[C].Madrid,Spain:Euro-pean Mathematioal Society Publishing House,2006.1433-1452.
  • 3D L Donoho,Y Tsaig.Extensions of compressed sensing[J].Signal Processing,2006,86(3):533-548.
  • 4M Andrecut,R A Este,S A Kauffman.Competitive optimiza-tion of compressed sensing[J].Journal of Physics A:Mathe-matical and Theoretical,2007,40(16):299-305.
  • 5Giacobello D,Christensen M G,Murthi M N,Jensen S H,Moonen M.Retrieving sparse patterns using a compressedsensing framework:Applications to speech coding based onsparse linear prediction[J].Signal Processing Letters,IEEE,2010,17(1):103-106.
  • 6J F Gemmeke,B Cranen.Using sparse representations for miss-ing data imputation in noise robust speech recognition[A].Eu-ropean Signal Processing Conf,(EUSIPCO)[C].Lausanne,Switzerland:EUSIPCO,2008.987-991.
  • 7H Luo,G Pottie.Routing explicit side information for datacompression in wireless sensor networks[A].Int Conf on Dis-tirbuted Computing in Sensor Systems(DCOSS)[C].MarinaDel Rey,CA:V K Prasanna Kumar,2005.75-88.
  • 8D Takhar,J Lsaka,M Wakin.A new compressive imagingcamera architecture using optical domain compression[A].Pro-ceedings of SPIE[C].Bellingham WA:International Societyfor Optical Engineering,2006:6065.
  • 9MichaelLustig,DavidDonoho,John M Pauly.SparseMRI:Theapplication of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 10P Borgnat,P Flandrin.Time-frequency localization from spar-sity constraints[A].IEEE Int Conf on Acoustics,Speech,andSignal Processing(ICASSP)[C].Piscataway:Institute ofElectrical and Electronics Engineers Inc,2008.3785-3788.

共引文献22

同被引文献22

  • 1Donoho D L. Compressed sensing[ J]. IEEE Trans on Informa- tion Theory,2006,52 ( 4 ) : 1289-1306.
  • 2Donoho D L, Tsaig Y. Extensions of compressed sensing [ J ]. Signal Processing ,2006,86(3 ) :533-548.
  • 3Candes E J,Wakin M B. An introduction to compressive sam- piing [ J ]. IEEE Signal Processing Magazine, 2008,25 ( 2 ) : 21 -30.
  • 4Kassim L A, Khalifa O O, Gunawan T S, et al. Compressive sensing based low bit rate speech encoder[ C]//Proc of 2012 international conference on computer and communication engi- neering. [ s. 1. ]: [ s. n. ] ,2012:302-307.
  • 5Li R, Gan Z L, Cui Z G, et al. Side information extrapolation using motion- aligned auto regressive model for compressed sensing based Wyner-Ziv codec[ J]. KSII Transactions on In- ternet and Information Systems,2013,7(2) :366-385.
  • 6Lustig M, Donoho D L, Santos J M, et al. Compressed sensing MRI [ J ]. IEEE Signal Processing Magazine,2008,25 ( 2 ) : 72- 82.
  • 7Xu Tao, Wang Wenwu. A compressed sensing approach for un- derdetermined blind audio source separation with sparse repre- sentation[ C ]//Proc of IEEE/SP 15th workshop on statistical signal processing. Cardiff: IEEE,2009:493-496.
  • 8Giacobello G, Christense M G, Murthi M N, et al. Retrieving sparse patterns using a compressed sensing framework:appli- cations to speech coding based on sparse linear prediction [ J ]. IEEE Signal Processing Letters ,2010,17 ( 1 ) 103-106.
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 10郭海燕,杨震.基于近似KLT域的语音信号压缩感知[J].电子与信息学报,2009,31(12):2948-2952. 被引量:32

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部