期刊文献+

最大度为8不含相邻4-圈的1-平面图边色数 被引量:1

Edge colorings of 1-planar graphs for maximum degree eight without adjacent 4-cycles
原文传递
导出
摘要 利用权转移方法证明了最大度为8且不含相邻4-圈的1-平面图是8-边可染的。 It is proved that every 1-planar graph of maximum degree 9 without adjacent 4-cycles can be 9-edge-colorable by the discharging method.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第4期18-23,共6页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(11271365)
关键词 1-平面图 边染色 权转移 1-planar graph edge coloring discharging
  • 相关文献

参考文献11

  • 1DOUGLASBW.Introductiontographtheory[M].Delhi:PearsonEducation,2001.
  • 2VIZINGVG.OnanestimateofthechromaticindexofaP-graph[J].MetodyDiskretAnaliz,1964(3):25-30.
  • 3VIZINGVG.Criticalgraphswithgivenchromaticclass[J].MetodyDiskretAnaliz,1965(5):9-17.
  • 4ZHANGLM.Everyplanarwithmaximumdegree7isofclass1[J].GraphsandCombinatorics,2000,16(4):467-495.
  • 5SANDERSDP,ZhaoYue.PlanargraphsofmaximumdegreesevenareclassI[J].JournalofCombinatorialTheory:SeriesB,2001,83(2):201-212.
  • 6FABRICII,MADARAST.Thestructureof1-planargraphs[J].DiscreteMathematics,2007,307(7-8):854-865.
  • 7ZHANGXin,LIUGuizhen.Onedgecoloringsof1-planargraphswithoutadjacenttriangles[J].InformationProcessingLetters,2012,112:138-142.
  • 8张欣,刘桂真,吴建良.不含3-圈的1-平面图的边染色[J].山东大学学报(理学版),2010,45(6):15-17. 被引量:8
  • 9ZHANGXin,WUJianliang.Onedgecoloringsof1-planargraphs[J].InformationProcessingLetters,2011,111(3):124-128.
  • 10VIZINGVG.Someunsolvedproblemsingraphtheory[J].UspekhiMatNauk,1968,23(6):117-134.

二级参考文献7

  • 1BONDY J A, MURTY U S R. Graph theory with applications [M]. New York: North-Holland, 1976.
  • 2BORODIN O V. Solution of Ringel' s problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs, Diskret. Analiz [J]. 1984, 41:12-26.
  • 3BORODIN O V, KOSTOCHKA A V, RASPAUD A, et al. Acyclic colouring of 1-planar graphsE J]. Discrete Applied Mathematics, 2001, 114:29-41.
  • 4FABRICI I, MADARAS T. The structure of 1-planar graphs [J]. Discrete Mathematics, 2007, 307:854-865.
  • 5SANDERS D P, ZHAO Yue. Planar graphs of maximum degree seven are class I [ J ]. Journal of Combinatorial Theory: Series B, 2002, 83(2):348-360.
  • 6YAP H P. Some topics in graph theory [M]. New York: Cambridge University Press, 1986.
  • 7SANDERS D P, ZHAO Yue. On the size of edge chromatic critical graphs [ J ]. Journal of Combinatorial Theory : Series B, 2002, 86:408-412.

共引文献7

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部