期刊文献+

非齐次Schrdinger方程的交替隐式格式 被引量:1

The Alternative Direction Implicit Scheme for Inhomogeneous Schrdinger Equation
下载PDF
导出
摘要 以Taylor展开为基本工具,研究了非齐次多维Schrdinger方程的交替方向隐格式.此格式在时空方向均具有2阶精度,而且所需求解的代数方程组的阶数与1维问题一样,具有经济、实用、易于模块化编程实现等优点.数值实验主要检验了数值格式长时间的模拟能力、离散电荷随时间演化关系等. Based on Taylor' s expansion, an alternative direction implicit scheme was proposed for multidimensional Schrodinger equation. The scheme is of second order both in time and space. Moreover, the scale of the algebraic equations resulting from the scheme is the same with a one-dimensional problem. It is economic, practical and can be coded modularly. Numerical experiments verify the long-term simulation of the developed scheme to original problem and the evolution of discrete charge against time.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期167-170,175,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11211171,11301234) 江西省自然科学基金(20114BAB201011) 江西省教育厅基金(GJJ12174)资助项目
关键词 SCHRODINGER方程 交替方向法 TAYLOR展开 Schrodinger equation alternative direction implicit scheme Taylor' s expansion
  • 相关文献

参考文献20

  • 1Griffiths D J. Introduction to quantum mechanics [ M ]. 2nd. New Jersey:Pearson Prentice Hall,2005.
  • 2马院萍,孔令华,王兰.2维Schrdinger方程的高阶紧致ADI格式[J].江西师范大学学报(自然科学版),2010,34(4):421-425. 被引量:7
  • 3Liao Honglin, Sun Zhizhong, Shi Hansheng. Error estimate of fourth-order compact scheme for linear SchrCMinger e- quations [J]. SIAM J Numerical Analysis,2010,47(6) : 4381-4401.
  • 4Chang Qianshun, Jia E, Sun W. Difference schemes for sol- ving the generalized nonlinear Sch~dinger equation [ J ]. J Comput Phys, 1999,148 (2) : 397-415.
  • 5Liao Honglin, Sun Zhizhong. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic e- quations [ J]. Numer Methods PDEs ,2010,26( 1 ) :37-60.
  • 6符芳芳,孔令华,王兰,曹莹,黄红.一类新的含双幂非线性项的Schrdinger方程的差分格式[J].江西师范大学学报(自然科学版),2010,34(1):22-26. 被引量:6
  • 7张鲁明.非线性Schrdinger方程的高精度守恒差分格式[J].应用数学学报,2005,28(1):178-186. 被引量:12
  • 8Hong Jialin, Liu Ying, Munthe-Kaas H, et al. Globally con- servative properties and error estimation of a muhisym- plectic scheme for SchrSdinger equations with variable coefficients [ J ]. Appl Numer Math, 2006,56 ( 6 ) : 814- 843.
  • 9Kong Linghua, Hong Jialin, Wang Lan, et al. Symplectic integrator for nonlinear high order Schrdinger equation with a trapped term [ J ]. J Comput Appl Math,2009,231 (2) :664-678.
  • 10王兰.多辛Preissman格式及其应用[J].江西师范大学学报(自然科学版),2009,33(1):42-46. 被引量:9

二级参考文献69

共引文献45

同被引文献15

  • 1Douglas J,Peaceman D W. Numerical solution of two-di-mensional heat flow problems [ J]. Am Inst Chem Eng,1955,1(4):505-512.
  • 2Douglas J, Rachford H H. On the numerical solution ofheat conduction problems in two and three space variables[J]. Trans Am Math Soc, 1956,136(82) :421439.
  • 3Strang G. On the construction and comparison of differencescheme [J].SIAM J Numer Anal,1968,5(3) ;506-517.
  • 4McLachlan R I,Quispel G R W. Splitting methods [ J].Acta Numer,2002,11 :341-434.
  • 5Ma Yuanping,Kong Linghua,Hong Jialin. High-order com-pact splitting multisymplectic method for the coupled non-linear Schrddinger equations [ J ]. Comput Math with Ap-pl,2011,61 (2) :319-333.
  • 6Weideman J A C,Herf>st B M. Split-step methods for thesolution of the nonlinear Schrbdinger equation [ J]. SIAMJ Numer Anal, 1986,23(3) :485-507.
  • 7Hong Jialin,Qin Mengzhao. Multisymplecticity of the cen-tered box discretization for Hamiltonian PDEs with m.^2space dimensions [ J]. Appl Math Letters,2002,15 (8):1006-1011.
  • 8Kong Linghua,Duan Yali’Wang Lan. Spectral-like resolu-tion compact ADI finite difference method for the multi-di-mensional Schrodinger equations [ J ] . Math Comput Mod-el,2012,55(5/6) :1798-1812.
  • 9Douglas J,Kim S. Improved accuracy for locally one-di-mensional methods for parabolic equation [ J] . Math Mod-els Meth Appl Sci,2001,11(9) : 1563-1579.
  • 10Li Jichun, Chen Yitung, Liu Guoqing. High-order compactADI methods for the parabolic equations [ J ]. ComputMath Appl,2006,52(8/9) : 1343-1356.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部