期刊文献+

热源分布模型对花岗石锯切热量分配比例的影响研究 被引量:1

Effect of heat source distribution model on energy partition when sawing granite
下载PDF
导出
摘要 热量分配比例是锯切加工中的一个重要参量,其值的大小直接影响到传入单颗磨粒的热流强度,进而影响到磨粒的失效形式。以锯切加工为对象,通过花岗石锯切实验,利用热电偶和功率计分别测量温度和功率信号。采用ANSYS有限元软件,分别将基于抛物线热源分布和三角形分布的计算温度与实验测量温度进行拟合,获得弧区内热量分配比例。研究结果表明:锯切弧区的热源更接近抛物线分布,热源按抛物线分布计算的热量分配比例约为6.08%~12.21%,比热源按三角形分布的结果约小1.61%~4.07%。 The energy partition is an important parameter in sawing, whose value directly affects the heat flux of single grain, therefore contributing largely to the failure of diamond. The temperature of the sawing contact is studied in sawing granite. The temperature and power signals are obtained by ammeter and foil thermocouples. A temperature model is established based on a parabolic heat flux distribution and a triangular heat flux distribution. Though matching the calculated temperature carves by the finite element software ANSYS with the measured temperature carves, the energy partition to the work piece are calculated. It is found that the heat flux in sawing contact zone is much nearer a parabolic distribution; and the energy partition to the work piece is about 6. 08% - 12.21% for parabolic distribution, about 1.61%-4.07% small than that of triangular distribution.
出处 《金刚石与磨料磨具工程》 CAS 2014年第2期11-15,共5页 Diamond & Abrasives Engineering
基金 华侨大学科研基金资助项目(10BS211) 国家自然科学基金(青年)资助项目(51105148) 长江学者和创新团队发展计划(IRT1063)
关键词 热源分布 热量分配比例 有限元仿真 锯切 花岗石 heat distribution energy partition finite element simulation sawing granite
  • 相关文献

参考文献13

  • 1ERTINGSHAUSEN W. Wear process in sawing and hard stone [J]. Industrial Diamond Review, 1985, 45(510):254-258.
  • 2LIAO Y S, LUO S Y. Effects of matrix characteristics on diamond composites [J]. Journal on Materials Science, 1993, 28(5):1245-1251.
  • 3ASCHE J. Deep grinding:a new dimension in cutting granite [J]. Industrial Diamond Review, 1999, 59(581) :110-122.
  • 4夏启龙,周志雄,黄向明,杨钦文.平面磨削热源模型的仿真与比较研究[J].计算机仿真,2010,27(1):297-300. 被引量:10
  • 5ZENG W M, XU X P. Analytical study of temperatures in sawing with segmented blades [J]. Key Engineering Materials, 2004, 259-260:490-495.
  • 6KIM N K, GUO C, MALKIN S. Heat flux and energy partition in creep feed grinding [J]. Annals of the CIRP, 1997, 46:227 -32.
  • 7ZHANG Y X, FANG C F, HUANG G Q, et al. Analysis of temperature in sawing of granite based on parabolic heat distribution[J]. Key Engineering Materials, 2014, 589-590:184-187.
  • 8夏荣周.传热学的有限元方法[M].广州:暨南大学出版社,2000.
  • 9ANDERSON D, WARKENTIN A, BAUER R. Experimental validation of numerical thermal models for dry grinding [J]. Journal of Materials Processing Technology, 2008, 204:269 -278.
  • 10徐西鹏,MALKINS.金刚石砂轮与花岗石摩擦界面能量传输特征的实验研究[J].摩擦学学报,2001,21(1):1-5. 被引量:9

二级参考文献27

  • 1徐鸿钧,徐西鹏,林涛,张幼桢.断续磨削时工件表层温度场解析[J].机械工程学报,1994,30(1):30-36. 被引量:19
  • 2林正百 徐昌齐.热电偶测量磨削区温度时的动态特性.磨料磨具与磨削,1984,(4):1-12.
  • 3A G Mamalis, et al. Effect of the Workpiece Material on the Heat Affected Zones during Grinding: a numerical simulation[J]. Int J. Adv Manuf Technol, 2003, 22:761 -767.
  • 4J Isenberg, S Malkin. Effects of Variable Thermal Properties on Moving - band - source Temperatures [ J ]. J Engng Ind. Trans. ASME, 1975, 55 : 1074 - 1078.
  • 5Y Y Li, Y Chen. Simulation of Surface Grinding[J]. J Engng Mater. Technol. Trans. ASME, 1989, 111: 46-53.
  • 6M Mahdi, L C Zhang. The Finite Element Thermal Analysis of Grinding Processes by ADINA [ J ]. Computers & Structures, 1995, 56:313-320.
  • 7H S Qi. A Contact Length Model for Grinding Wheel- workpiece Contact[ D]. Liverpool John Morres University, 1995.
  • 8C Guo, S Malkin. Analysis of Transient Temperature in Grinding [ J ]. Journal of Engineering for Industry, 1995, 117 : 571 - 577.
  • 9S Malkin. Grinding Technology : Theory and Application of Machi- ning with Abrasives[ MJ. New York: John Wiley and Sons, 1989.
  • 10W B Rowe, et al. Grinding Temperatures and Energy Partitioning [C]. Proc. R. Soc. Lond. A., 1997, 453.1083-1104.

共引文献60

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部