期刊文献+

不同管径碳纳米管中CO2/CH4分离的分子模拟 被引量:14

Molecular simulations on diameter effect of carbon nanotube for separation of CO_2/CH_4
下载PDF
导出
摘要 生物甲烷路线在CO2减排和节能方面有很大的应用前景。而对生物沼气的分离是此路线的一个关键问题,特别是在60℃和0.1 MPa下。巨正则Monte Carlo(GCMC)和平衡分子动力学(EMD)的分子模拟方法研究CO2和CH4在不同管径的碳纳米管(CNT)中的吸附和扩散,可以从分子层面研究生物沼气的分离机理。分别计算了CO2/CH4二元混合物吸附量、吸附选择性、自扩散系数和渗透选择性等参数。模拟结果表明:由于碳管的受限空间和CO2与碳纳米管壁面分子之间强相互作用,导致二元等物质的量的混合物CO2/CH4的吸附量和扩散系数的差异。CO2的吸附量和自扩散系数都比CH4的大。渗透选择性在碳管管径达到最接近1 nm时达到最大值,此时混合物的分离过程是吸附控制,而非扩散控制。 Biomethane route has large potential in emission reduction and energy saving. One of the key issues is separation of biogas in operating conditions of 333 K and 0.1 MPa. Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics simulations (EMD) were used to compute adsorption loadings and self-diffusivities of CH4/CO2 at various diameters of carbon nanotube (CNT) bundles. Single component and equimolar gases were simulated. CO2 always had larger adsorption loading and diffusion coefficient than CH4 as the result of relatively strong interaction between CO2 molecules and tube walls, due to the confined capacity. The permselectivity reached a maximum in closely 1 nm, and under such conditions the separation process was controlled by adsorption rather than diffusion.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第5期1736-1742,共7页 CIESC Journal
基金 国家重点基础研究发展计划项目(2013CB733501) 国家自然科学基金项目(21176113,21136004,21206070,91334202) 江苏高校优势学科建设工程项目~~
关键词 分子模拟 碳纳米管 生物沼气 分离 自扩散 选择性 molecular simulation carbon nanotube biogas separation self-diffusion selectivity
  • 相关文献

参考文献2

二级参考文献104

  • 1李莉,袁文辉,韦朝海.二氧化碳的高温吸附剂及其吸附过程[J].化工进展,2006,25(8):918-922. 被引量:38
  • 2Abanades J C,Rubin E S,Anthony E J,2004.Sorbent Cost and Performance in CO2 Capture Systems.Industrial & Engineering Chemistry Research,43(13):3462-3466.
  • 3Abidi N,Sivadea A,Bourret D,Larbot A,Boutevin B,Guida-Pietrasanta F,Ratsimihety A,2006.Surface modification of mesoporous membranes by fluoro-silane coupling reagent for CO2 Separation.Journal Of Membrane Science,270:101-107.
  • 4Aboudheir A,Tontiwachwuthikul P,Idem R,2006.Rigorous model for predicting the behavior of CO2 absorption into AMP in packed-bed absorption columns.Industrial & Engineering Chemistry Research,45(8):2553-2557.
  • 5Aguilar-Vega M,Paul D R,1993.Gas transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group.Journal of Polymer Science Part B:Polymer Physics,31(11):1599-1610.
  • 6Aguilar-Vega M,Paul D R,1993.Gas transport properties of polyphenylene ethers.Journal of Polymer Science Part B:Polymer Physics.31(11):1577-1589.
  • 7Aitken C L,Koros W J,Paul D R,1992.Effect of structural symmetry on gas transport properties of polysulfones.Macromolecules,25(13):3424-3434.
  • 8Al-Juaied M,Rochelle G T,2006.Absorption of CO2 in aqueous diglycolamine.Industrial & Engineering Chemistry Research,45(8):2473-2482.
  • 9Anson M,Marchese J,Garis E,Ochoa N,Pagliero C,2004.ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation.Journal of Membrane Science,243:19-28.
  • 10Aoki K,Kusakabe K,Morooka S,2000.Separation of gases with an A-type zeolite membrane.Industrial & Engineering Chemistry Research,39:2245-2251.

共引文献114

同被引文献186

引证文献14

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部