期刊文献+

改进的精英遗传算法及其在特征选择中的应用 被引量:7

Improved elitist genetic algorithm for feature selection
下载PDF
导出
摘要 结合精英遗传算法"优胜"和稳态遗传算法"劣汰"的优点,提出一种先全局大范围搜索后局部重点搜索的分级遗传算法并用于心电信号的特征选择。针对传统遗传算法易陷入局部极小的问题,提出新的存优去劣扩空间选择算子,使种群中的优良个体保持到下一代,且能淘汰劣质个体,加入新的个体,保证算法可以在全空间搜索;引入拼接算子和切断算子在局部空间搜索,解决了遗传算法收敛速度慢的问题。以朴素贝叶斯分类器分类性能作为特征子集评价标准,在MIT-BIH数据库上的实验结果表明,算法得到的特征子集具有良好的分类性能。 Based on survival of the fittest which is combined elitist strategy of elitist genetic algorithm (GA) with steady GA, an improved elitist genetic algorithm is proposed for feature selection, which could search in a global wide range at first and focus search on local key areas in the latter stage. In order to avoid falling into local optimum, a new selecting operator named 'select superior, eliminate inferior and enlarge space' is put forword, which could not only maintain excellent individuals to next generation, but also eliminate inferior individuals, join new individuals into population so as to search in the whole space. Splicing and cutting operators is introduced in the local search space accelerated the convergence speed. The performance of Naive Bayesian classifier as a feature subset evaluation criteria, the experimental results of the entire MIT-BIH arrhythmia database demonstrate that the feature subset which are obtained from the proposed algorithm has good performance compared with the other algorithms.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第5期1792-1796,共5页 Computer Engineering and Design
基金 天津市应用基础与前沿技术研究计划重点基金项目(11JCZDJC15700) 河北省自然科学基金项目(F2013202104)
关键词 精英策略 遗传算法 特征选择 心电信号 朴素贝叶斯分类器 elitist strategy genetic algorithm (GA) feature selectiom ECG naive Bayesian classifier (NBC)
  • 相关文献

参考文献12

  • 1Tong D L,Mintram R.Genetic algorithm-neural network (GANN):A study of neural network activation functions and depth of genetic algorithm search applied to feature selection[J].International Journal of Machine Learning and Cybernetics,2010,1 (1-4):75-87.
  • 2Valls V,Ballestin F,Quintanilla S.A hybrid genetic algorithm for the resource-constrained project scheduling problem[J].European Journal of Operational Research,2008,185(2):495-508.
  • 3Moradi M H,Abedini M.A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems[J].International Journal of Electrical Power & Energy Systems,2012,34 (1):66-74.
  • 4孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 5Goldberger A L,Amaral L A,Glass L,et al.Physiobank,physiotoolkit and physionet:Components of a newresearch resource for complex physiologic signals[J].Circulation,2000,101 (23):215-220.
  • 6Mar T,Zaunseder S,Martinez,J P,et al.Optimization of ECG classification by means of feature selection[J].IEEE Trans on Biomedical Engineering,2011,58 (8):2168-2177.
  • 7[OL].http://www.physionet.org/physiotools/softwareindex.shtml.
  • 8Mar T,Zaunseder S,Martínez J P,et al.Optimization of ECG classification by means of feature selection[J].IEEE Transactions on Biomedical Engineering,2011,58 (8):2168-2177.
  • 9Chazal P,Reilly R B.A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features[J].IEEE Trans on Biomedical Engineering,2006,53 (12):2535-2543.
  • 10Llamedo Soria M,Martinez J P.An ECG classification model based on multilead wavelet transforn features[C]//America:Computers inCardiology.IEEE,2007:105-108.

二级参考文献20

  • 1彭宏,王兴华.具有Elitist选择的遗传算法的收敛速度估计[J].科学通报,1997,42(2):144-147. 被引量:18
  • 2Holland J H.Adaptation in Natural and Artificial System[M].USA:University of Michigan Press,1975.
  • 3Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].New York:Addison-Wesley,1989.
  • 4Kitano H.Empirical studies on the speed of convergence of the neural network training by genetical algorithm[A].Proc of AAAI 90[C].Menlo Park,USA:The AAAI Press,1990.881 -890.
  • 5Kubota N,Shimojima K,Fukuda T.The role of virus infection in virus-evolutionary genetic algorithm envolutonary computation[A].1996 Proceeding of IEEE International Conference[C].Nagoya,Japan:IEEE,1996.182-187.
  • 6Eiben A E,Aarts E H,Van Hee K M.Global convergence of genetic algorithm:an infinite markov chain analysis[A].In:Schwefel H P,Manner R.Eds.Parallel problem Solving from Nature[C].Heidelberg,Berlin:Springerverlag,1991.4-12.
  • 7Rudolph G.Convergence analysis of canonical genetic algorithms[J].IEEE Transaction Neural Networks,1994,5(1):96-101.
  • 8Dinabandhu B,Murthy C A.Genetic algorithm with elitist model and its convergence[J].Int J of Pattern Recognition and Artificial Intelligence,1996,10(6):990 -995.
  • 9Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,T Meyarivan.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transaction on evolutionary computation,2002,6 (2):182-197.
  • 10Chang Wook Ahn,R S Ramakrishna.Elitism-based compact genetic algorithms[J].IEEE Transaction on evolutionary computation,2003,7 (4):367-385.

共引文献77

同被引文献60

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部