期刊文献+

基于MEMS技术的植入式柔性多触点平面电极阵列 被引量:2

Implantable Flexible Multi-Contacts Planar Electrode Arrays Based on MEMS Technology
原文传递
导出
摘要 为提高植入式电极阵列的分辨率,降低生物组织损伤,保证其在生物体内稳定工作,本文提出了一种基于聚对二甲苯(Parylene C)的柔性多触点平面电极阵列.该电极为Parylene C/Au/Parylene C 3层结构,共24个通道.电极采用标准MEMS工艺加工,触点分布精确,轮廓清晰,表面平整,粗糙度为23.8 nm.为评估电极的工作性能,采用磷酸缓冲液(PBS溶液)模拟生物组织液,对电极阵列进行了电化学阻抗测试及循环伏安测试.测试表明,电极在100 Hz与1 000 Hz的阻抗值约为400 kΩ与50 kΩ,满足记录电极对阻抗的要求,同时,不同通道之间具有良好的一致性.此外,对随机选取的一个通道进行的循环伏安法测试表明,电极在刺激模式下具有良好的可逆性,对组织无影响,该通道的电荷储存能力约为650μC/cm2,与文献报道电极相当. In order to enhance the resolution of implantable electrode array, minimize tissue damage and ensure stability in vivo, this paper proposed a multi-contacts flexible electrode array based on Parylene C. The electrode array includes 24 channels, with a Parylene C/Au/Parylene C sandwich structure. The electrode array was fabricated with micro electro mechanical systems (MEMS) technology, which enables accurate distribution of contacts, excellent profiles and topography, with roughness of 23.8 nm. To fur- ther evaluate the electrode performance, electrochemical impedance spectral measurement and cyclic vol- tammetry measurement were conducted, with PBS solution as tissue fluid. The impedance is 400 k~ and 50 k~ at the frequency of 100 Hz and 1 000 Hz respectively, which satisfies the requirement of recording electrode. Meanwhile, the electrode exhibits excellent consistency among different channels. Cyclic vol- tammetry measurement of a randomly chosen channel shows good reversibility in stimulated mode, without causing negective effects. The charge storage capacity is calculated around 650 μC/cm2, which is com- parable with electrodes reported in references.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第3期217-221,共5页 Nanotechnology and Precision Engineering
基金 中国科学院"百人计划"资助项目(Y22D011D05)
关键词 神经调控 聚对二甲苯 电极阻抗 电荷储存能力 neural modulation Parylene C electrode impedance charge storge capacity
  • 相关文献

参考文献2

二级参考文献18

  • 1Cogan S F. Neural stimulation and recording electrodes [ J ]. Annual Review of Biomedical Engineering, 2008, 10 : 275- 309.
  • 2Meyer R D, Cogan S F, Nguyen T H, et al. Electrodeposited iridium oxide for neural stimulation and recording electrodes [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9( 1 ) :2-11.
  • 3Zhou H B, Li G, Sun X N, et al. Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces[ J]. Journal of Microelectromechanical Systems, 2009, 18 ( 1 ) : 88-96.
  • 4Merrill D R, Bikson M, Jefferys J G R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols[J]. Journal of Neuroscience Methods, 2005, 141 (2) : 171-198.
  • 5Bauerdick S, Burkhardt C, Kern D P, et al. Substrate integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication [ J ]. Biomed Microdevices, 2003, 5(2) :93-99.
  • 6Hung A, Zhou D, Greenberg R, et al. Micromachined electrodes for high density neural stimulation systems [ C ]// 15th IEEE International Conference on Micro Electro Mechanical Systems. Las Vegas, NV, USA , 2002: 56-59.
  • 7Paik S J, Park Y, Cho D D. Roughened polysilicon for low impedance microelectrodes in neural probes [ J ]. Journal of Micromechanics and Microengineering, 2003, 13 ( 3 ) : 373- 379.
  • 8Cui X Y, Lee V A, Raphael Y, et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends [ J ]. Journal of Biomedical Materials Research, 2001, 56(2) :261-272.
  • 9Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling[J]. Nano Letters , 2005, 5(6) :1107-1110.
  • 10Nguyen-Vu T D B, Chen H, Cassell A M, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3D neural electrical interface [ J ]. IEEE Transactions on Biomedical Engineering, 2007, 54 (6) : 1121-1128.

共引文献2

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部