期刊文献+

基于熵的实值免疫检测器降维优化算法

Real-valued Immune Detector Dimension-reducing Optimization Algorithm with Entropy
下载PDF
导出
摘要 针对免疫机制的入侵检测系统中实值检测器的维数灾难问题,借鉴信息熵理论,提出一种基于熵的实值检测器降维优化算法,使检测器在保留足够信息量的前提下在低维空间中运行,有效提高检测效率.实验表明,降维后的检测器表现出更好的检测性能. In order to deal with the "dimension curse" problem of real-valued detector in immunity-based intrusion detection system,we borrowed ideas from the information entropy theory,and a real-valued immune detector dimension-reducing optimization algorithm is proposed in this paper.The optimized detectors can retain the most useful information and work in the low-dimensional shape-space,which can improve the detection efficiency.The experiments show that the dimension-reduced detectors have better detector performances.
作者 孙永倩 席亮
出处 《哈尔滨理工大学学报》 CAS 2014年第2期68-72,共5页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(61103149)
关键词 人工免疫 入侵检测 检测器 降维 artificial immune intrusion detection detector dimension-reducing entropy
  • 相关文献

参考文献20

  • 1穆成坡,黄厚宽,田盛丰,李向军.自动入侵响应决策技术的研究综述[J].计算机研究与发展,2008,45(8):1290-1298. 被引量:5
  • 2WENKE LEE. A Data Mining Framework for Constructing Fea- tures and Models for Intrusion Detection Systems [ D ]. PhD the- sis, Columbia University, 1999 : 1 - 10.
  • 3FOX K L, HENNING R R, Reed J H, et al. A Neural Network Approach Towards Intrusion Detection [ C ]//In: Proceedings of the 13th National Computer Security Conference, Washington, D. C, 1990:125-134.
  • 4肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 5李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 6MANIKOPOULOS C, PAPAVASSILIOU S. Network Intrusion and Fault Detection. A Statistical Anomaly Approach [ J]. IEEE Com- munications Magazine, 2002, 40(10) : 76 -82.
  • 7ZHENG X F, FANG Y H, ZHOU Y H, et al. A Novel Multi-lay- ered Immune Network Intrusion Detection Defense Model: MINID [J]. Journal of Networks, 2013, 8(3): 636-644.
  • 8SALMON H M, DE FARIAS C M, LOUREIRO P. Intrusion De- tection System for Wireless Sensor Networks Using Danger Theory Immune-inspired Techniques[J]. International Journal of Wireless Information Networks, 2013, 20( 1 ) : 39 -66.
  • 9DASGUPTA D, YU S, NINO F. Recent Advances in Artificial Immune Systems: Models and Applications [ J ]. Applied Soft Computing, 2011, 11 (2) : 1574 - 1587.
  • 10GUO J H, YANG H D. A Negative Selection Algorithm Integrat- ed with Immune Network Theory [ C ]//In: Proceedings of the 8th International Conference on Natural Computation, Chongqing, China, 2012 : 859 - 863.

二级参考文献45

  • 1LI Tao.An immunity based network security risk estimation[J].Science in China(Series F),2005,48(5):557-578. 被引量:30
  • 2穆成坡,黄厚宽,田盛丰.入侵检测系统报警信息聚合与关联技术研究综述[J].计算机研究与发展,2006,43(1):1-8. 被引量:70
  • 3Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415~425.
  • 4Weston J., Watkins C. Multi-class support vector machines. Department of Computer Science, Royal Holloway University of London Technical Report, SD-TR-98-04, 1998.
  • 5Kressel Ulrich. Pairwise classification and support vector machines. In: Schkopf B., Burges C.J.C., Smola A.J. eds. Advances in Kernel Methods--Support Vector Learning, Cambridge, MA: MIT Press, 1998, 255~268.
  • 6Platt J.C., Cristianini N., Shawe-Taylor J. Large margin DAG's for multiclass classification. Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000, 12: 547~553.
  • 7Li Kun-Lun, Huang Hou-Kuan, Tian Sheng-Feng. A novel multi-class SVM classifier based on DDAG. In: Proceedings of IEEE ICMLC'02, Beijing, China, 2002, 3: 1203~1207.
  • 8Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167.
  • 9Vapnik V. Statistical Learning Theory. New York: Springer Verlag, 1998.
  • 10Corts C., Vapnik V. Support vector networks. Machine Learning, 1995, 20(3): 273~297.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部