期刊文献+

基于贝叶斯网络的网络品牌认知度评价方法 被引量:8

Evaluation Method of Web Brands Recognition Based on Bayesian Network
下载PDF
导出
摘要 随着电子商务和网络经济的快速发展,网络品牌的不确定信息越来越多,给消费者的选择造成了很大的困扰。考虑到网购消费者普遍存在的重复购买属性以及网络品牌对消费期望的重要性,有必要考虑网络品牌对消费者购物期望的动态影响,探究一种科学有效的评价体系,完成对网络品牌认知度的评价。贝叶斯网络是获取不确定知识的有效方法。介绍贝叶斯网络的优势与特征,论证基于贝叶斯网络进行网络品牌分类的可行性。实验证明通过贝叶斯网络可以有效地对网络品牌进行分类,获取电子商务系统的所需信息,帮助用户进行网络品牌的选择和购买行为的决策。 With the rapid development of economic commerce and network economy,uncertainty knowledge of web brands becomes more prevalent,selection of consumer gets more and more difficult. Considering the repeat purchase properties for online shopping consumers and the importance of network brand to consumer expectations,so needing to consider the dynamic impact of network brand to consumers shopping expectations,explore a scientific and effective evaluation system,complete the online brand awareness of the evaluation. Bayes-ian network has proved to be an effective method obtaining uncertainty knowledge. Expound Bayesian network's superiority and fea-tures,and illustrate the feasibility of web brands classification based on Bayesian network. The experiment result shows that through Bayesian network can classify the network brands effectively,gain more information from economic commerce system,and provide useful information for users.
作者 张野 于湛麟
出处 《计算机技术与发展》 2014年第5期176-179,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(71201012)
关键词 贝叶斯网络 网络品牌 品牌认知度 品牌分类 Bayesian network web brand brand recognition brand categorization
  • 相关文献

参考文献14

二级参考文献93

  • 1周晓俊,张申生,周根春.基于约束的智能主体及其在自动协商中的应用[J].上海交通大学学报,2005,39(4):574-577. 被引量:6
  • 2张宏辉,唐锡宽.贝叶斯推理网络在大型旋转机械故障诊断中的应用[J].机械科学与技术(江苏),1996,25(2):43-46. 被引量:12
  • 3宫义山,赵海,哈铁军,张永庆,徐峰.多源信息的模糊决策树融合算法研究[J].沈阳工业大学学报,2006,28(2):127-131. 被引量:3
  • 4胡春明,怀进鹏,沃天宇,雷磊.一种支持端到端QoS的服务网格体系结构[J].软件学报,2006,17(6):1448-1458. 被引量:19
  • 5Zeng L, Benatallam B. QoS-aware Middleware for Web Services Composition[J]. IEEE Transactions on Software Engineering, 2004, 30(5): 311-327.
  • 6Yu B, Singh M P. An Evidential Model of Distributed Reputation Management[C]//Proceedings of the 1st International Joint Conference on Autonomous Agents and Multi-agent Systems. New York, USA: ACM Press, 2002: 294-301.
  • 7Kalepu S, Krishnaswamy S, Loke S W. Reputation=f(User Ranking, Compliance, Verity)[C]//Proceedings of the IEEE International Conference on Web Services. San Diego, USA: IEEE Computer Society Press, 2004: 200-207.
  • 8Sherchan W, Krishnaswamy S, Loke S W. Relevant Past Performance for Selecting Web Services[C]//Proceedings of the 5th International Conference on Quality Software. Melbourne, USA: IEEE Computer Society Press, 2005: 439-445.
  • 9Bobbin A, Poninale L, Minichino M, et al. Improving the Analysis of Dependable Systems by Mapping Fault Trees into Bayesian Networks [ J ]. Reliability Engineering and System Safety,2001,51(3) :249 - 260.
  • 10Cheng Jie, Bell D, Liu Wei - ru. Learning Bayesian networks from data:An efficient approach based on information-theory[J]. Artificial InteUigence,2002,137(2) :43 - 90.

共引文献55

同被引文献64

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部