期刊文献+

实系数二元二次方程组实根分类求解方法

Real Root Solving for Bivariate Quadratic Equation System Based on Classification Method
下载PDF
导出
摘要 为了提高平面二次曲线求交结果的精度和拓扑稳定性,提出一种基于二次曲线分类的二元二次方程组实根求解方法.首先将二元二次方程组的2个方程依照系数判断出其在x-y平面上的曲线类型,并根据不同的曲线类型分类情况,应用曲线的参数方程将原方程组转化为一元四次方程;然后求解出一元四次方程的解,并依此求出原二元二次方程组的解.实验结果表明,与吴消元法相比,该方法有效地提高了二元二次方程组求解的精度. In order to improve accuracy and topological stability in calculating the intersection of planar quadratic curves, we present a real-root solving method for bivariate quadratic equation systems, which is based on the classification of the quadratic curves. Each equation is first classified to several types of quadratic curves in the x-y plane according to its coefficients. Then transform the equation system into a quartic equation via the parametric equation of an arbitrary quadratic curve. Solve the quartic equation, and finally obtain the roots of the bivariate quadratic equation system. The experiments illustrate that our method can improve the accuracy, compared with the method of Wu.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第5期725-730,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2012AA040902) 国家"九七三"重点基础研究发展计划项目(2010CB328001) 国家自然科学基金(61063029 61173077)
关键词 二元二次方程组 实根求解 几何分类 参数方程 二次曲线 bivariate quadratic equation system real root solving geometric classification parametricequation quadratic curve
  • 相关文献

参考文献10

二级参考文献28

  • 1刘洪元.吴消元法与四元术[J].辽宁大学学报(自然科学版),2004,31(4):338-341. 被引量:3
  • 2陈小雕,雍俊海,郑国勤,孙家广.圆环面/球面求交算法[J].计算机辅助设计与图形学学报,2005,17(6):1202-1206. 被引量:15
  • 3葛文兵,李成军,汪国平.Sweep曲面自相交的快速检测和消除[J].计算机辅助设计与图形学学报,2007,19(7):817-821. 被引量:2
  • 4L.D福克斯等著 厉声林等译.设计与制造用的计算几何学[M].国防工业出版社,1986..
  • 5Levin J. Mathematical models for determining the intersections of quadric surfaces[J]. Computer Graphics and Image Processing, 1979, 11(1): 73~87.
  • 6Kim K, Kim M S. Torus/sphere intersection based on a configuration space approach[J]. Graphical Models and Image Processing, 1998, 60(1): 77~92.
  • 7Karim A -M, Yeh H J. On the determination of starting points for parametric surface intersections[J]. Computer-Aided Design, 1997, 29(1): 21~35.
  • 8Wang Wenping, Wang Jiaye, Kim M S. An algebraic condition for the separation of two ellipsoids[J]. Computer Aided Geometric Design, 2001, 18(6): 531~539.
  • 9[俄]雅各布森 上海师范大学数学系代数教研室译.基础代数[M].北京: 高等教育出版社,1988..
  • 10Pratt M, Geisow A. Surface/Surface Intersection Problems[M]. In: Gregory J A, ed. The Mathematics of Surfaces Ⅰ ,Oxford: Clarendon Press, 1986. 117~142

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部