期刊文献+

网络化制造模式下基于改进蚁群算法的供应链调度优化研究 被引量:7

Supply chain scheduling optimization under networked manufacturing based on improved ant colony optimization algorithm
原文传递
导出
摘要 为制定网络化制造(networked manufacturing,NM)模式下供应链合作成员间的动态调度策略,构建了由制造商、协同设计商以及客户组成的三层动态调度模型;在生产能力约束、多目标优化约束等制约因素下,采用时间函数、成本函数和延期惩罚函数三个目标函数对调度问题进行描述;使用改进蚁群算法(improved ant colony optimization algorithm,IM-ACO),对调度路径可行解节点添加不同的信息素,并将信息素浓度约束在τ_(min)和τ_(max)之间,使得供应链客户个性化需求服务、运作时间、成本等综合收益达到最优.实例仿真表明本文提出的动态调度优化算法求解具有较快的搜索速度、收敛性好,算法具有较好的稳定性;同时,也表明本文构建调度模型合理,可以为实际生产调度提供优化的策略. In order to get dynamic scheduling strategy of alliance members based on networked manu- facturing (NM), we set a three-layer dynamic scheduling model composed of manufacturer, cooperative designer and customer. Under the constraints of product capability and multi objective optimization, we apply three objective functions: time function, cost function and delay punishment function to depict the scheduling model. In addition, an improved ant colony optimization algorithm (IM-ACO) is employed to solve our presented model. By adding different pheromone concentration to the feasible nodes of scheduling path, we confine pheromone concentration within Train and Tm~~, thus get optimal benefits regarding indi- vidual service of customer, operation time, and cost. An actual case experiment shows that the presented optimization algorithm has fast search speed, better convergence, and good stability. Furthermore, it also proves our designed scheduling model is reasonable, which can provide optimal strategy for real-world scheduling.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第5期1267-1275,共9页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71201106 71301108) 中国博士后科学基金(2013M530228) 辽宁省博士启动基金(20111052)
关键词 供应链动态调度 改进蚁群优化算法 网络化制造 信息素 多约束 supply chain dynamic scheduling improved ant colony optimization algorithm networkedmanufacturing pheromone multi-constraint
  • 相关文献

参考文献14

  • 1范玉顺.网络化制造的内涵与关键技术问题[J].计算机集成制造系统-CIMS,2003,9(7):576-582. 被引量:143
  • 2Edgar P L,Ydstie B E,Grossmann L E.A model predictive control strategy for supply chain optimization[J].Computers and Chemical Engineering,2003,27(8):1201-1218.
  • 3Torabi S,Ghomi S,Karimi B.A hybrid genetic algorithm for the finite horizon economic lot and delivery scheduling in supply chains[J].European Journal of Operational Research,2006,173(1):173-189.
  • 4Hung W Y,Samsatli N J,Shah N.Object-oriented dynamic supply-chain modeling incorporated with production scheduling[J].European Journal of Operational Research,2006,169(3):1064-1076.
  • 5Naso D,Surico M,Turchiano B,et al.Genetic algorithms for supply-chain scheduling:A case study in the distribution of ready-mixed concrete[J].European Journal of Operational Research,2007,177(3):2069-2099.
  • 6Yimer A,Demirli K.A genetic approach to two-phase optimization of dynamic supply chain scheduling[J].Computers & Industrial Engineering,2010,58(3):411-422.
  • 7姚建明,蒲云.基于动态生产能力约束的MC模式下供应链调度优化[J].系统工程,2005,23(2):25-30. 被引量:20
  • 8孙靖,林杰.信息不完全共享下MC供应链动态调度模型研究[J].系统仿真学报,2007,19(9):1943-1948. 被引量:14
  • 9张鹏,林杰,魏云霞.基于异类多种群蚁群算法的MC供应链分布式调度研究[J].计算机应用,2010,30(9):2279-2282. 被引量:3
  • 10Ahn H J,Lee H.An agent-based dynamic information network for supply chain management[J].BT Technology Journal,2004,22(2):18-27.

二级参考文献55

共引文献179

同被引文献77

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部