期刊文献+

一种基于噪声分类的语音增强方法 被引量:5

A Speech Enhancement Approach Based on Noise Classification
下载PDF
导出
摘要 为了提高噪声估计的准确性,改进语音增强方法性能,在改进的最小控制递归平均算法(Improved Minima Controlled Recursive Averaging,IMCRA)的基础上提出了一种基于噪声分类的语音增强方法。该方法首先对含噪语音进行噪声类型的判断,然后根据判定的噪声类型选取相应的最优参数进行噪声估计,最后采用最优修正的对数谱幅度语音估计计算增强后的语音。该方法相对于传统IMCRA算法,在语音信号的还原和背景噪声的抑制两方面都有较好的性能。 To improve the accuracy of noise estimate and the performance of speech enhancement algorithms,this paper proposes a noise-classification-based speech enhancement approach by using the improved minima controlled recursive averaging(IMCRA)algorithm.In this proposed algorithm,the type of noisy speech is firstly determined,which will be utilized to select the optimal parameters IMCRA to estimate the noise spectrum.Finally,the enhanced speech is calculated by the optimally modified logspectral amplitude speech estimator.Compared with the traditional IMCRA algorithm,the proposed approach can attain better performance in both the restoration of the speech signal and the suppression of background noise.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期196-201,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(61271349) 华东理工大学基本科研业务费探索研究基金(WH1214015)
关键词 语音增强 噪声分类 噪声估计 speech enhancement noise classification noise estimation
  • 相关文献

参考文献17

  • 1ji Ming, Srinivasan R. Crookes D. A corpus-based approach to speech enhancement from nonstationary noise[J]. Audio, Speech, and I.anguage Process, 2011, 19(4) : 822 -836.
  • 2Gunawan T S, Ambikairajah E, Epps J. Perceptual speech enhancement exploiting temporal masking properties of human auditory system[J]. Speech Communication, 2010, 52(5): 381-393.
  • 3Paliwal K, Wojcicki K, Schwerin B. Single-channel speech enhancement using spectral subtraction in the short-time modulation domain[J]. Speech Coinmunication. 2010. 52 (5) : 450- 475.
  • 4Lu Ching ta, Tseng Kun-fu. A gain factor adapted by mask ing property and SNR variation for speech enhancement in colored-noise corruptions[J]. Cumputer Speech Language, 2010. 24(4): 632-647.
  • 5Lee W, Song J H, Chang J H. Minima controlled speech presence uncertainty tracking method for speech enhancement [J].Signal Process, 2011, 91(1): 155- 161.
  • 6Lu Ching ta. Enhancement of single channel speech using perceptual-decision-directed approach[J]. Speech Communi cation, 2011, 53(4): 495- 507.
  • 7Boll S. Suppression of acoustic noise in speech using spectral suhtraction[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(2): 113-120.
  • 8Cohen 1, Berdugo B. Speech enhancement for non-stationary noise environments[J]. Signal Processing, 2001, Bl (11) : 2403 -2418.
  • 9Ephraim Y, Malah D. Speech enhancement using a minimum mean square error shortqime spectral amplitude estimator[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1984, 32(6): 1109-1121.
  • 10Ephraim Y, Malah D. Speech enhancement using a minimum mean square error log-spectral amplitude estimator[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, 33(2):443-445.

二级参考文献9

  • 1陶智,赵鹤鸣,龚呈卉.基于听觉掩蔽效应和Bark子波变换的语音增强[J].声学学报,2005,30(4):367-372. 被引量:39
  • 2Cohen I . Noise spectrum estimation in adverse environments: Improved minima controlled recursive averaging [J ]. IEEE Transactions on Speech and Audio Processing, 2003, 11 (5) : 466-475.
  • 3Martin R. Noise power spectral density esti smoothing and minimum statistics[J] tions on Speech and Audio Processing, 2001, IEEE Transac 9(5) : 504-512.
  • 4Virag N. Single channel speech enhancement based on masking properties of the human auditory system[J]. IEEE Transac tions on Speech and Audio Processing, 1999, 7(2) :126-137.
  • 5Knerr S, Personnaz L. Single layer learning revisited: A step- wise procedure for building and training a neural network[J]. Optimization Methods and Software, 1990, 1: 23-34.
  • 6Chang C C, Lin CJ. Lihsvrn: A library for support vector ma chines [J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3) : 1-27.
  • 7Varga A, Steeneken H J . Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems [J]. Speech Communication, 1993, 12(3): 247-251.
  • 8IEEE Subcommittee. IEEE Recommended Practice for Speech Quality Measurements[M]. USA: IEEE, 1969.
  • 9Hu Yi, Loizou P C. Subjective comparison and evaluation of speech enhancement algorithms [J]. Speech Communication, 2007, 49(7-8): 588-601.

共引文献3

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部