期刊文献+

基于混合高斯输出贝叶斯信念网络模型的设备退化状态识别与剩余使用寿命预测方法研究 被引量:9

Equipment degradation state identification and residual life prediction based on MoG-BBN
下载PDF
导出
摘要 提出了基于混合高斯输出贝叶斯信念网络模型的设备退化状态识别与剩余使用寿命预测新方法,将变量消元和期望最大化算法相结合对模型进行推理,应用聚类评价指标对状态数进行优化,通过计算待识别特征向量的概率值来确定设备当前的退化状态,在退化状态识别的基础上,提出了剩余使用寿命预测方法。最后,分别应用50组轴承全寿命仿真数据和3组轴承全寿命实验数据对模型进行验证。结果表明,该模型可有效地识别设备的退化状态并对剩余使用寿命进行预测。 A new approach for equipment health state identification and residual life prediction based on mixture of Gaussian Bayesian belief network (MoG-BBN)was presented.The inference algorithm was established based on variable elimination (VE )and expectation maximization (EM).State number was optimized based on cluster validity indexes. The equipment degradation state was determined through calculating the probability of eigenvectors to be identified.Then, the residual life prediction method was presented based on identifying the degradation state.Finally,50 bearings whole life simulation data and 3 bearings whole life test data were used to demonstrate the proposed methods.The results showed that the proposed method can be used to identify degradation states of an equipment and predict its residual life effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第8期171-179,共9页 Journal of Vibration and Shock
基金 国家自然科学基金(51035008) 军队"十二五"武器装备预先研究项目(51327020101 51327020304)
关键词 混合高斯输出贝叶斯信念网络模型 退化状态识别 剩余使用寿命预测 轴承 mixture of Gaussian Bayesian belief network health state identification residual life prediction bearing
  • 相关文献

参考文献41

  • 1Bechhoefer E, Bernhard A, He D. Use of paris law tbr prediction of component remaining life [ C ]. IEEE Aerospace Conference, 2008, 1 -9.
  • 2Jin G, Matthews D, Fan Y, et al. Physics of failure-based degradation modeling and lifetime prediction of the momentum wheel in a dynamic covariate environment [J]. Engineering Failure Analysis, 2013, 28 (3) :222 - 240.
  • 3Gebraeel N, Lawley M, Liu R, et al. Residual life predictions from vibration-based degradation signals: a neural network approach [ J ]. IEEE Transactions on Industrial Electronics, 2004, 51 (3) :694 -700.
  • 4Tian Z G, Wong L, Safaei N. A neural network approach for remaining useful life prediction utilizing both failure and suspension histories [ J ]. Mechanical Systems and Signal Processing, 2010, 24 (5) : 1542 - 1555.
  • 5滕红智,赵建民,贾希胜,张星辉,王正军.基于CHMM的齿轮箱状态识别研究[J].振动与冲击,2012,31(5):92-96. 被引量:21
  • 6胡海峰,安茂春,秦国军,胡茑庆.基于隐半Markov模型的故障诊断和故障预测方法研究[J].兵工学报,2009,30(1):69-75. 被引量:37
  • 7Dong M, He D. A segmental Hidden Semi-Markov Model (HSMM)-based diagnostics and prognostics framework and methodology[J]. Mechanical Systems and Signal Processing, 2007,21 (5) : 2248 - 2266.
  • 8Peng Y, Dong M. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction [J]. Mechanical Systems and Signal Processing, 2011, 25 ( 1 ) :237 -252.
  • 9Zhou Z J, Hu C H, Xu D L,et al. A model for real-time failure prognosis based on hidden Markov model and belief rule base [ J ]. European Journal of Operational Research, 2010, 207( 1 ) :269 -283.
  • 10Baruah P, Chinnam R B. HMMs for diagnostics and prognostics in machining processes [ J ]. International Journal of Production Research, 2005, 43 (6) : 1275 - 1293.

二级参考文献65

  • 1武传玉,刘付显.基于模糊评判的新防空威胁评估模型[J].系统工程与电子技术,2004,26(8):1069-1071. 被引量:20
  • 2柳新民,邱静,刘冠军.基于连续高斯密度混合HMM的滚动轴承故障诊断研究[J].机械传动,2005,29(1):7-10. 被引量:5
  • 3宋雪萍,马辉,毛国豪,闻邦椿.基于CHMM的旋转机械故障诊断技术[J].机械工程学报,2006,42(5):126-130. 被引量:12
  • 4冯卉,邢清华,宋乃华.一种基于区间数的空中目标威胁评估技术[J].系统工程与电子技术,2006,28(8):1201-1203. 被引量:35
  • 5Miao Q, Makis V. Condition monitoring and classification of rotating machinery using wavelets and. hidden Markov models [ J ]. Mechanical Systems and Signal Processing, 2007, 21:840 - 855.
  • 6Zhang X, Xu R, Kwan C, et al. An integrated approach to bearing fault diagnostics and prognostics[J ]. Proceedings of the 2005 American Control Conference, 2005, 4:2750 - 2755.
  • 7Dong M, He D. A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology[J ]. Mechanical Systems and Signal Processing, 2007, 21(5) :2248 - 2266.
  • 8Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition [J ]. Proceedings of the IEEE, 1989, 77(2) : 257 - 285.
  • 9Murphy K P. Hidden semi-Markov models (HSMMs) [EB/OL]. [ 2002 ]. http://www, ai. mit. edu/-murphyk.
  • 10Yu S Z, Kobayashi H. An efficient forward-backward algorithm for an explicit-duration hidden Markov model [J]. IEEE Signal Processing Letters, 2003, 10(1) :1 - 14.

共引文献102

同被引文献91

引证文献9

二级引证文献387

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部