期刊文献+

改进粒子滤波器的移动机器人同步定位与地图构建方法 被引量:12

A method for mobile robot SLAM based on modified particle filter
原文传递
导出
摘要 传统的基于粒子滤波器的移动机器人同步定位与地图构建(SLAM)方法往往随着迭代次数的增加会产生粒子退化的问题,提出了一种基于人工鱼群算法与定向重采样思想的改进的粒子滤波器用于移动机器人SLAM问题。方法首先将人工鱼群算法引入到粒子滤波器中,从而使得粒子分布在重采样之前就更加接近真实情况,然后利用定向重采样的方法,使得新产生的粒子更加接近于真实的运动情况,从而提高了机器人的位置估计精度与地图创建精度。仿真实验结果证明了该方法能够得到更多的有效粒子,而且能够提高粒子的多样性,并且提高SLAM性能。 Traditional methods based on particle filter for mobile robot SLAM (simultaneous localization and mapping)always induce particles degradation . Focusing on the particles degradation of the traditional particle filter and the need of a large number of particles to improve the precision of robot location ,the AFAS (artificial fishing-swarm algorithm ) is introduced into the particle filter method . This method updates the particle' s prediction again basing on the AFSA which adjusts the particle distribution concentrate around the robot's true pose and improve the accuracy of SLAM .Through the MATLAB simulation ,the results show that the method can locate the robot quickly and accurately ,and improve the mapping precision .
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第4期39-45,共7页 Journal of Chongqing University
基金 "863"国家高科技计划资助项目(2007AA041501)
关键词 粒子滤波器 移动机器人 同步定位与地图创建 粒子退化 人工鱼群算法 定向重采样 particle filter mobile robot simultaneous localization and mapping (SLAM) particles degradation artificial fishing-swarm algorithm directional resample
  • 相关文献

参考文献17

  • 1王勇,朱华,王永胜,程刚,李允旺.煤矿救灾机器人研究现状及需要重点解决的技术问题[J].煤矿机械,2007,28(4):107-109. 被引量:69
  • 2Kortenkamp D, Bonasso R P, Murphy R. AI-based mobile robots., case studies of successful robot systems[M]. Cambridge : MIT Press, 1998.
  • 3戴珊珊,董伟伟.煤矿环境探测机器人航位研究[J].煤矿机械,2010,31(9):49-50. 被引量:1
  • 4Daum F. Nonlinear filters: beyond the Kalman filter[J]. IEEE Aerospace and Electronic Systems Magazine, 2005,20 (8) : 177-183.
  • 5Dissanayake G,Newman P,Clark S,et al. A solution to the simultaneous localization and map building(SLAM) problem [J]. IEEE Transactions on Robotics and Automation, 2001,17 (3) : 229-241.
  • 6Holmes S A,Klein G,Murray D W. An O(N2 ) square root unscented Kalman filter for visual simultaneous localization and mapping [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (7): 1251-1263.
  • 7余洪山,王耀南.基于粒子滤波器的移动机器人定位和地图创建研究进展[J].机器人,2007,29(3):281-289. 被引量:14
  • 8Montemerlo M,Thrun S,Koller D, et al. FastSLAM : A factored solution to the simultaneous localization and mapping problem [C]// Proceedings of the National Conference on Artificial Intelligence,Jul.y 28- August 1, 2002, Cambridge, MA, USA. Massachusetts: MIT Press, 2002 : 593-598.
  • 9Montemerlo M, Thrun S, Koller D, et al. FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges [C] // Proceedings of the International Conference on Artificial Intelligence, August 9-15, 2004, Acapulco, Mexico. Piscataway.. IEEE Press, 2003:1151-1156.
  • 10Dong J F,Wijesoma W S,Shacklock A P. An efficient rao- blackwellized genetic algorithmic filter for SLAM [C]// Proceedings of 2007 IEEE International Conference on Robotics and Automation, April 10-14,2007, Roma, Italy. Piscataway: IEEE Press, 2007 : 2427-2432.

二级参考文献61

共引文献993

同被引文献109

引证文献12

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部