摘要
通过对大同市2011-2012年PM10质量浓度、有关气象要素和参数进行随机抽样、分组,建立单隐含层BP神经网络、多隐含层BP神经网络以及RBF网络对以上数据进行调试和训练,得出:就2011-2012年预测PM10日均质量浓度样本而言,按预测效果好坏排序,多隐含层最佳BP神经网络﹥单隐含层最佳BP神经网络﹥RBF神经网络;从网络最小误差总和来看,三种网络对夏秋两季的预报效果最好;从预测值和实测值的拟合效果来看,RBF网络对春季和冬季PM10质量浓度的预测效果最好;多隐含层BP网络对秋季PM10质量浓度的预测效果最好;三种神经网络对夏季PM10质量浓度的预测效果都很好,优劣性差异不大。
Based on the random sampling and grouping of PM10 mass concentration from 2011-2012, meteorological elements and parameters in Datong, a single hidden layer of BP neural network and hidden muhilayer BP neural network and RBF network were established and debugged and trained. It is concluded that: for predicted samples of PM10 daily average mass concentration during 2011-2012, according to the forecast effect, hidden muhilayer optimum BP neural network 〉 RBF neural network; optimum BP neural network 〉 single hidden layer from the view of network minimum error sum, three kinds of network to forecast effect is best for summer and autumn; from the point of the fitting effect in forecast values and measure values, RBF network for the spring and winter PMIO mass concentration prediction effect is the best; hidden muhilayer BP network to fall prediction effect of PMIO mass concentration is the best; Three kinds of neural networks for summer PMIO mass concentration prediction effect is very good and the difference is not big.
出处
《气象研究与应用》
2014年第1期50-55,90,共7页
Journal of Meteorological Research and Application
基金
山西省气象局2013年青年基金课题(SXKQNDQ20138764)资助
关键词
神经网络
气溶胶质量浓度
预测研究
neural network
aerosol mass concentration
prediction research