期刊文献+

天山南坡科其喀尔冰川消融区运动特征分析 被引量:7

Analysis of the flow features in the ablation zone of the Koxkar Glacier on south slopes of the Tianshan Mountains
下载PDF
导出
摘要 基于2009年5月至2011年10月科其喀尔冰川的花杆观测资料,对其消融区的表面运动特征进行分析.结果表明:冰川消融区的年水平运动速度最大值为86.69m·a^-1,年垂直运动速度最大值为15.34m·a^-1,均出现在冰川海拔4000—4200m的消融区上部;在靠近冰川末端的冰舌下部,受冰量补给减弱、厚层表碛覆盖等影响,冰川运动缓慢,年水平运动速度小于5m·a^-1,而垂直运动速度值小于2m·a^-1.大多数横剖面的水平运动速度具有从中部向边缘逐渐减小的特征,而有的剖面却出现局部速度增大的区域.整体而言,冰川水平及垂直运动速度随海拔降低而减小,符合冰川运动的一般规律,但丰要受地形作用的影响,垂直运动速度随海拔的变化会出现波动.消融期月水平运动速度与同期气温和降水的变化具有一定的相关性,可能反映出气候快速变化对冰川运动的影响. Based on high-resolution GPS measurements on the Koxkar Glacier in the Tianshan Mountains, the spatial-temporal variations of flow velocity on the glacier were analyzed. The fastest flow was found near the e- quilibrium line (4 000 -4 200 m a. s. 1. ), of which the horizontal flow velocity reached 86.69 m · a^- 1 and the vertical flow velocity reached 15.34 m · a^-1. In the lower part of the glacier, where the extensive debris cover developed, ice flow was slower, with horizontal ice velocity varying between 0 - 5 m · a^- 1, and vertical ice velocity varying between 0 - 2m · a^- 1, due to reduction in supply of ice mass and influence of thick debris cover. The variation of flow velocity with elevation met the general glacier flow law, but due to the influence of terrain, occasionally there was some spatial fluctuation in vertical flow velocity. Analysis of the seasonal variation of flow velocity reveals a good relationship between ice flow and climate factors, which may reflect the response of glac- ier flow to fast climate change.
出处 《冰川冻土》 CSCD 北大核心 2014年第2期248-258,共11页 Journal of Glaciology and Geocryology
基金 国家自然科学基金项目(41130641 41271078)资助
关键词 科其喀尔冰川 冰川运动 水平运动速度 垂直运动速度 Koxkar Glacier glacier flow horizontal flow velocity vertical flow velocity
  • 相关文献

参考文献41

  • 1周在明,李忠勤,李慧林,井哲帆.天山乌鲁木齐河源区1号冰川运动速度特征及其动力学模拟[J].冰川冻土,2009,31(1):55-61. 被引量:20
  • 2佩特森WSB.冰川物理学[M].北京:科学出版社,1987.
  • 3施雅风.中国冰川与环境[M].北京:科学出版社,2000..
  • 4Benn D I, Warren C R, Mottram R H. Calving processes and the dynamics of calving glaciers[J]. Earth-Science Reviews, 2007, 82: 143-179.
  • 5Azuma N. An anisotropic flow law for ice-sheet and its implications[J]. Annals of Glaciology, 1996, 23: 202-208.
  • 6Rabus B T, Lang O. Interannual surface velocity variations of Pine Island Glacier, West Antarctica[J]. Annals of Glaciology, 2003, 36: 205-214.
  • 7Dowdeswell J A, Unwin B, Nuttall A M, et al. Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry[J]. Earth and Planetary Science Letters, 1999, 167: 131-140.
  • 8Joughin I R, Winebrenner D, Fahnestock M. Observations of ice-sheet motion in Greenland using satellite radar interferometry[J]. Geophysical Research Letter, 1995, 22: 571-574.
  • 9刘宇硕,秦翔,杜文涛,张雪艳,陈记祖,谢小龙,张晓鹏.祁连山冷龙岭宁缠河3号冰川表面流速特征分析[J].冰川冻土,2013,35(4):834-840. 被引量:3
  • 10井哲帆,刘力,周在明,邓宇峰.冰川运动速度影响因子的强度分析——以祁连山七一冰川为例[J].冰川冻土,2011,33(6):1222-1228. 被引量:15

二级参考文献217

共引文献289

同被引文献110

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部