期刊文献+

核典型相关分析算法的多特征融合情感识别 被引量:5

Emotion recognition based on multi-features fused by kernel canonical correlation analysis
下载PDF
导出
摘要 为了提高情感识别的正确率,针对单模情感特征及传统特征融合方法识别低的缺陷,提出了一种核典型相关分析算法(KCCA)的多特征(multi-features)融合情感识别方法(MF-KCCA)。分别提取语音韵律特征和分数阶傅里叶域表情特征,利用两种特征互补性,采用KCCA将它们进行融合,降低特征向量的维数,利用最近邻分类器进行情感分类和识别。采用加拿大瑞尔森大学数据库进行仿真实验,结果表明,MF-KCCA有效提高了语音情感的识别率。 In order to improve the accuracy of emotion recognition, a novel emotion recognition method(MF-KCCA)based on multi-features fused by kernel canonical correlation analysis to solve the defects of single feature and traditional features fusion method is proposed. The speech prosody and fractional Fourier domain features are extracted, and then two kinds of features are fused by KCCA to reduce the dimension of feature vector. Emotion is recognized by the nearest neighbor classifier. The simulation experiments are carried out on Canadian Ryerson University database, and the results show that the proposed method can effectively improve the emotion recognition rate.
出处 《计算机工程与应用》 CSCD 2014年第9期193-196,253,共5页 Computer Engineering and Applications
基金 河南省软科学研究计划资助项目(No.102400450034) 河南省科技计划基金资助项目(No.092300410216)
关键词 情感识别 特征融合 表情特征 韵律特征 核典型相关分析 emotion recognition feature fusion emotion features prosodic features kernel canonical correlation analysis
  • 相关文献

参考文献14

  • 1黄晓峰,彭远芳.语音情感智能识别的建模与仿真[J].计算机工程与应用,2012,48(29):142-146. 被引量:1
  • 2Han M J,Hsu J H,Song K T,et al.A new information fusion method for bimodal robotic emotion recognition[J].Journal of Computers,2008,3(7):39-47.
  • 3叶吉祥,王聪慧.改进的F-score算法在语音情感识别中的应用[J].计算机工程与应用,2013,49(16):137-141. 被引量:8
  • 4Zeng Z,Tu J,Pianfetti B M,et al.Audio-visual affective expression recognition through multistream fused HMM[J].IEEE Transactions on Multimedia,2008,10(4):570-577.
  • 5Jaimes A,Sebe N.Multimodal human-computer interaction:a survey[J].Computer Vision and Image Understanding,2007,108(1):116-134.
  • 6Wang Y,Guan L.Recognizing human emotional state from audiovisual signals[J].IEEE Transactions on Multimedia,2008,10(5):936-946.
  • 7Blaschko M B,Lampert C H.Correlational spectral clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition,CVPR 2008,2008:1-8.
  • 8孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 9Melzer T,Reiter M,Bischof H.Appearance models based on kernel canonical correlation analysis[J].Pattern Recognition,2003,36(9):1961-1971.
  • 10Wang Y,Guan L,Venetsanopoulos A N.Kernel crossmodal factor analysis for information fusion with application to bimodal emotion recognition[J].IEEE Transactions on Multimedia,2012,14(3).

二级参考文献47

共引文献100

同被引文献51

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部